Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Modulation recognition (MR) has become an essential topic in today's wireless communications systems. Recently, convolutional neural networks (CNNs) have been employed as a potent tool for MR because of their ability to minimize the feature's susceptibility to its surroundings and reduce the need for human feature extraction and evaluation. In particular, these investigations rely on the unrealistic assumption that the channel coefficient is typically one. This motivates us to overcome the previous constraint by providing a novel MR suited to fading wireless channels. This paper proposes a novel MR algorithm that is capable of recognizing a broad variety of modulation types, including -ary QAM and -ary PSK, without enforcing any restrictions on the modulation size, . The analysis has shown that each modulation choice has a distinct two-dimensional in-phase quadrature histogram. This property is beneficially utilized to design a convolutional neural-network-based MR algorithm. When compared to the existing techniques, Monte Carlo simulations demonstrated the success of the proposed design.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9501192 | PMC |
http://dx.doi.org/10.3390/mi13091533 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!