Herein, we explore the supercapacitor and photocatalytic applications of poly(1-naphthylamine) (PNA) nanoparticles. The PNA nanoparticles were synthesized by using polymerization of 1-naphthylamine and characterized with several techniques in order to understand the morphological, structural, optical and compositional properties. The structural and morphological properties confirmed the formation of crystalline nanoparticles of PNA. The Fourier-transform infrared (FTIR) spectrum revealed the successful polymerization of 1-naphthylamine monomer to PNA. The absorption peaks that appeared at 236 and 309 nm in the UV−Vis spectrum for PNA nanoparticles represented the π−π* transition. The supercapacitor properties of the prepared PNA nanoparticles were evaluated with cyclic voltammetry (CV) and galvanostatic charge−discharge (GCD) methods at different scan rates and current densities, respectively. The effective series resistance was calculated using electrochemical impedance spectroscopy (EIS), resulting in a minimum resistance value of 1.5 Ω. The highest specific capacitance value of PNA was found to be 255 Fg−1. This electrode also exhibited excellent stability with >93% capacitance retention for 1000 cycles, as measured at 1A g−1. Further, the prepared PNA nanoparticles were used as an effective photocatalyst for the photocatalytic degradation of methylene blue (MB) dye, which exhibited ~61% degradation under UV light irradiation. The observed results revealed that PNA nanoparticles are not only a potential electrode material for supercapacitor applications but also an efficient photocatalyst for the photocatalytic degradation of hazardous and toxic organic dyes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9502796PMC
http://dx.doi.org/10.3390/mi13091528DOI Listing

Publication Analysis

Top Keywords

pna nanoparticles
24
pna
9
nanoparticles potential
8
supercapacitor photocatalytic
8
photocatalytic applications
8
nanoparticles pna
8
polymerization 1-naphthylamine
8
prepared pna
8
photocatalyst photocatalytic
8
photocatalytic degradation
8

Similar Publications

YAP/TAZ Inhibitor-Based Drug Delivery System for Selective Tumor Accumulation and Cancer Combination Therapy.

Biomacromolecules

January 2025

Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.

Article Synopsis
  • YAP and TAZ are crucial coactivators often overactive in cancer, promoting tumor growth and resistance to treatments.
  • Niflumic acid (NA), a known inhibitor of YAP/TAZ, has poor effectiveness due to its short half-life, prompting the development of NA-based prodrug polymers to improve its bioavailability.
  • The selected NA polymer formed micellar nanocarriers that effectively targeted tumors and worked alongside receptor tyrosine kinase inhibitors (RTKIs) like Dasatinib, enhancing breast cancer therapy outcomes.
View Article and Find Full Text PDF

To the best of our knowledge, this is the first attempt to synthesize, characterize, and determine the antibacterial and anticancer effects of three novel conjugates of plant lectins: phytohemagglutinin lectin (PHA), soybean agglutinin (SBA), and peanut agglutinin (PNA) with chitosan nanoparticles (CHNPs). The lectin concentration within prepared conjugates was estimated using nannodrop, and the highest concentration was 0.96 mg/ml in PHA-CHNPs.

View Article and Find Full Text PDF

A label-free electrochemical DNA detection strategy based on self-assembled α-FeO/FeO nanosheets with PNA-DNA hybridization process was developed for ultrasensitive detection of APOE ε4 gene, one of the most robust genetic risks for Alzheimer's Disease (AD). In this work, magnetic α-FeO/FeO heterogeneous nanosheets were prepared by hydrothermal-calcined reduction method and loaded with Au nanoparticles (AuNPs) on their surfaces. The magnetic α-FeO/FeO@Au nanocomposites significantly enhanced the electrochemical response as a signal amplification matrix and were able to bind to the magnetic glassy carbon electrode (MGCE) surface by magnetic self-assembly.

View Article and Find Full Text PDF

Peptides are well known for forming nanoparticles, while DNA duplexes, triplexes and tetraplexes create rigid nanostructures. Accordingly, the covalent conjugation of peptides to DNA/RNA produces hybrid self-assembling features and may lead to interesting nano-assemblies distinct from those of their individual components. Herein, we report the preparation of a collagen mimetic peptide incorporating lysine in its backbone, with alkylamino side chains radially conjugated with G-rich PNA [collagen-(PNA-GGG)].

View Article and Find Full Text PDF
Article Synopsis
  • MicroRNA-141-3p has a harmful impact on ischemic stroke progression, and targeting it could lead to new treatments.
  • A new peptide nucleic acid inhibitor, sγPNA-141, was developed to specifically target miR-141-3p and compared to traditional treatments in a mouse model.
  • Results show sγPNA-141 reduces brain damage and improves recovery by enhancing neuroprotective proteins and functioning through the TGF-β-SMAD2/3 pathway, suggesting it could be an effective stroke therapy.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!