In this study, the first goal is achieving a hybrid approach composed by an Interval Type-3 Fuzzy Logic System (IT3FLS) for the dynamic adaptation of α and β parameters of Bee Colony Optimization (BCO) algorithm. The second goal is, based on BCO, to find the best partition of the membership functions (MFs) of a Fuzzy Controller (FC) for trajectory tracking in an Autonomous Mobile Robot (AMR). A comparative with different types of Fuzzy Systems, such as Fuzzy BCO with Type-1 Fuzzy Logic System (FBCO-T1FLS), Fuzzy BCO with Interval Type-2 Fuzzy Logic System (FBCO-IT2FLS) and Fuzzy BCO with Generalized Type-2 Fuzzy Logic System (FBCO-GT2FLS) is analyzed. A disturbance is added to verify if the FBCO-IT3FLS performance is better when the uncertainty is present. Several performance indices are used; RMSE, MSE and some metrics of control such as, ITAE, IAE, ISE and ITSE to measure the controller’s performance. The experiments show excellent results using FBCO-IT3FLS and are better than FBCO-GT2FLS, FBCO-IT2FLS and FBCO-T1FLS in the adaptation of α and β parameters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503405 | PMC |
http://dx.doi.org/10.3390/mi13091490 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!