A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Novel Manifold Dual-Microchannel Flow Field Structure with High-Performance Heat Dissipation. | LitMetric

With the development of miniaturization and integration of electronic devices, the conventional manifold microchannels (MMCs) structure has been unable to meet the heat dissipation requirements caused by the rapid growth of internal heat flux. There is an urgent need to design a new heat dissipation structure with higher heat dissipation capacity to ensure the working stability and life of electronic devices. In this paper, we designed a novel manifold dual-microchannel (MDMC) cooling system that embedded the microchannel structure into the manifold microchannel structure. The MDMC not only has good heat dissipation performance that can meet the development needs of electronic equipment to miniaturization and integration, but also has a compact structure that does not increase the overall thickness and volume compared with MMC. The high temperature uniformity and heat transfer performance of MDMC are significantly improved compared to MMC. The is reduced by 13.6% and 17.5% at the heat flux density of 300 W/cm and 700 W/cm, respectively. In addition, the influence of the inlet-2 velocity and the total microchannels number on the heat transfer performance of the MDMC structure are numerically investigated. The results show that the decrease rate of and Δ is about 6.69% and 16% with the increase of inlet-2 velocity from 1.2 m/s to 2.4 m/s and microchannels number from 10 to 48, respectively. At the same time, the best temperature uniformity is obtained when the number of microchannels is 16.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503348PMC
http://dx.doi.org/10.3390/mi13091420DOI Listing

Publication Analysis

Top Keywords

heat dissipation
20
heat
9
novel manifold
8
manifold dual-microchannel
8
miniaturization integration
8
electronic devices
8
heat flux
8
microchannel structure
8
compared mmc
8
temperature uniformity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!