Multiscale Simulation of Composite Structures: Damage Assessment, Mechanical Analysis and Prediction.

Materials (Basel)

Laboratory for Advanced Materials, Structures, and Digitalization, Department of Aerospace Science and Technology, National and Kapodistrian University of Athens, 34400 Psachna, Greece.

Published: September 2022

AI Article Synopsis

Article Abstract

Composites can be engineered to exhibit high strength, high stiffness, and high toughness. Composite structures have been used increasingly in various engineering applications. In recent decades, most fundamentals of science have expanded their reach by many orders of magnitude. Currently, one of the primary goals of science and technology seems to be the quest to develop reliable methods for linking the physical phenomena that occur over multiple length scales, particularly from a nano-/micro-scale to a macroscale. The aim of this Special Issue is to assemble high quality papers that advance the field of multiscale simulation of composite structures, through the application of any modern computational and/or analytical methods alone or in conjunction with experimental techniques, for damage assessment or mechanical analysis and prediction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9505162PMC
http://dx.doi.org/10.3390/ma15186494DOI Listing

Publication Analysis

Top Keywords

composite structures
12
multiscale simulation
8
simulation composite
8
damage assessment
8
assessment mechanical
8
mechanical analysis
8
analysis prediction
8
structures damage
4
prediction composites
4
composites engineered
4

Similar Publications

Production and Characterization of Oil-Loaded, Semi-Resorbable, Tri-Layered Hernia Mesh.

Polymers (Basel)

January 2025

Institute of Graduate Studies, Bioengineering Division, Tokat Gaziosmanpaşa University, 60250 Tokat, Türkiye.

Hernia repair is the most common surgical operation applied worldwide. Mesh prostheses are used to support weakened or damaged tissue to decrease the risk of hernia recurrence. However, the patches currently used in clinic applications have significant short-term and long-term risks.

View Article and Find Full Text PDF

This study employed a high-speed rotating crushing process to modify pyrolyzed carbon black (CBp) using self-lubricating and low-friction polytetrafluoroethylene (PTFE). The effects of PTFE content on the dispersion, mechanical properties, wear resistance, and thermal stability of modified PTFE-CBp/natural rubber (NR) composites were investigated. The rotating crushing process from the high-speed grinder altered the physical structure of PTFE, forming tiny fibrous structures that interspersed among the CBp particles.

View Article and Find Full Text PDF

Ligament tears can strongly influence an individual's daily life and ability to engage in physical activities. It is essential to develop artificial scaffolds for ligament repairs in order to effectively restore damaged ligaments. In this experiment, the objective was to evaluate fibrous membranes as scaffolds for ligament repair.

View Article and Find Full Text PDF

Direct Ink Writing 3D Printing Polytetrafluoroethylene/Polydimethylsiloxane Membrane with Anisotropic Surface Wettability and Its Application in Oil-Water Separation.

Polymers (Basel)

January 2025

State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

Biological surfaces with physical discontinuity or chemical heterogeneity possess special wettability in the form of anisotropic wetting behavior. However, there are several challenges in designing and manufacturing samples with anisotropic wettability. This study investigates the fabrication of PTFE/PDMS grid membranes using Direct Ink Writing (DIW) 3D printing for oil-water separation applications.

View Article and Find Full Text PDF

In this paper, alumina-modified wood liquefaction (AL-WP) was prepared by blending nano-alumina (AlO) into wood liquefaction phenolic resin (WP) using a co-blending method. Alumina-modified wood liquefaction protofilament fiber (AL-WPF) was obtained by melt-spinning, curing, and thermo-curing processes, which were followed by carbonization to obtain alumina-modified wood liquefaction carbon fiber (AL-WCF). This paper focuses on the enhancement effect of nano-alumina doping on the mechanical properties and heat resistance of wood liquefaction carbon fiber (WCF), explores the evolution of graphite microcrystalline structure during the high-temperature carbonization process, and optimizes the curing conditions of AL-WPF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!