Various fields within biomedical engineering have been afforded rapid scientific advancement through the incorporation of microfluidics. As literature surrounding biological systems become more comprehensive and many microfluidic platforms show potential for commercialization, the development of representative fluidic systems has become more intricate. This has brought increased scrutiny of the material properties of microfluidic substrates. Thermoplastics have been highlighted as a promising material, given their material adaptability and commercial compatibility. This review provides a comprehensive discussion surrounding recent developments pertaining to thermoplastic microfluidic device fabrication. Existing and emerging approaches related to both microchannel fabrication and device assembly are highlighted, with consideration toward how specific approaches induce physical and/or chemical properties that are optimally suited for relevant real-world applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503322 | PMC |
http://dx.doi.org/10.3390/ma15186478 | DOI Listing |
Nanoscale
January 2025
Department of Materials Science and Engineering, University of Crete, 700 13 Heraklion, Crete, Greece.
During the last decades, the use of innovative hybrid materials in energy storage devices has led to notable advances in the field. However, further enhancement of their electrochemical performance faces significant challenges nowadays, imposed by the materials used in the electrodes and the electrolyte. Such problems include the high solubility of both the organic and the inorganic anode components in the electrolyte as well as the limited intrinsic electronic conductivity and substantial volume variation of the materials during cycling.
View Article and Find Full Text PDFACS Mater Au
January 2025
Department of Electrical and Electronic Engineering, Kyushu Institute of Technology, 1-1 Sensuicho, Tobataku, Kitakyushu, Fukuoka 804-8550, Japan.
Ionic gels (IGs), ionic liquids (ILs) dispersed in polymers, exhibit extremely low vapor pressure, electrochemical and thermal stability, and excellent mechanical characteristics; therefore, they are used for fabricating stretchable sensors, electrochemical transistors, and energy storage devices. Although such characteristics are promising for flexible and stretchable electronics, the mechanical stress-induced ruptured covalent bonds forming polymer networks cannot recover owing to the irreversible interaction between the bonds. Physical cross-linking via noncovalent bonds enables the interaction of polymers and ILs to form supramolecular IGs (SIGs), which exhibit favorable characteristics for wearable devices that conventional IGs with noncovalent bonds cannot achieve.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
Photochemistry-based silica formation offers a pathway toward energy-efficient and controlled fabrication processes. While the transformation of poly(dimethylsiloxane) (PDMS) to silica (often referred to as SiO due to incomplete conversion) under deep ultraviolet (DUV) irradiation in the presence of oxygen/ozone has experimentally been validated, the detailed mechanism remains elusive. This study demonstrates the underlying molecular-level mechanism of PDMS-to-silica conversion using density functional theory (DFT) calculations.
View Article and Find Full Text PDFChemSusChem
January 2025
VITO NV, Match Unit, BELGIUM.
The growing pursuit of carbon circularity in material fabrication has led to the increased use of recycled and biobased resources, especially in epoxy resin systems. Fossil-based bisphenols are being replaced with recycled bisphenol A (r-BPA) and lignin derivatives, both derived from previous processes. In this study, r-BPA was chemically recycled from end-of-life televisions, then converted into r-DGEBA and r-DAGBA through glycidylation and acrylic acid ring-opening.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
"Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41 A Gr. Ghica Voda Alley, 700487, Iasi, Romania. Electronic address:
Conductive hydrogels are an appealing class of "smart" materials with great application potential, as they combine the stimuli-responsiveness of hydrogels with the conductivity of magnetic fillers. However, fabricating multifunctional conductive hydrogels that simultaneously exhibit conductivity, self-healing, adhesiveness, and anti-freezing properties remains a significant challenge. To address this issue, we introduce here a freeze-thawing approach to develop versatile, multiresponsive composite cryogels able to preserve their features under low-temperature conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!