Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To solve the global shortage of land and offshore resources, the development of deep-sea resources has become a popular topic in recent decades. Deep-sea composites are widely used materials in abyssal resources extraction, and corresponding marine exploration vehicles and monitoring devices for deep-sea engineering. This article firstly reviews the existing research results and limitations of marine composites and equipment or devices used for resource extraction. By combining the research progress of smart composites, deep-sea smart composite materials with the three characteristics of self-diagnosis, self-healing, and self-powered are proposed and relevant studies are summarized. Finally, the review summarizes research challenges for the materials, and looks forward to the development of new composites and their practical application in conjunction with the progress of composites disciplines and AI techniques.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9502296 | PMC |
http://dx.doi.org/10.3390/ma15186469 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!