This paper presents the results of the microstructure, mechanical and physicochemical properties of coatings produced by the remelting of a VC pre-coat applied in the form of a paste on 145Cr6 steel. The remelting process was carried out using a diode laser beam. A laser device with a rated power of 3 kW was used. During these tests, a constant laser beam scanning speed of 3 m/min was used. The variable parameter was the laser beam power. Values of 500 W, 900 W and 1100 W were used. In the first stage of this study, single laser tracks were formed, and basic tests, such as on microstructure, microhardness and chemical composition, were performed. In the second stage of this study, multiple laser tracks were prepared using previously selected parameters. On such specimens, it was possible to test the same traits as for single tracks and, additionally, to perform corrosion and wear resistance tests. It was found that the obtained coatings have different properties than the base material. No primary vanadium carbides were found in the melted zone, but the proposed production method contributed to an increase in microhardness and wear resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9506382 | PMC |
http://dx.doi.org/10.3390/ma15186417 | DOI Listing |
Nano Lett
January 2025
University Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France.
Thermal transport in nanostructures plays a critical role in modern technologies. As devices shrink, techniques that can measure thermal properties at nanometer and nanosecond scales are increasingly needed to capture transient, out-of-equilibrium phenomena. We present a novel pump-probe photon-electron method within a scanning transmission electron microscope (STEM) to map temperature dynamics with unprecedented spatial and temporal resolutions.
View Article and Find Full Text PDFMode-pairing quantum key distribution (MP-QKD) circumvents the need for phase locking through post-selection pairing, still allowing it to surpass the repeaterless rate-transmittance limit. This protocol, therefore, presents a promising approach for practical QKD implementation. Without phase locking and tracking, the performance of the laser, channel, and detector critically affects the determination of the maximum pairing length in pairing strategies.
View Article and Find Full Text PDFComput Biol Med
January 2025
Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, 32610, United States; Department of Medicine, University of Florida, Gainesville, FL, 32610, United States; Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, 32610, United States; Intelligent Clinical Care Center, University of Florida, Gainesville, FL, 32610, United States. Electronic address:
Retinal image registration is essential for monitoring eye diseases and planning treatments, yet it remains challenging due to large deformations, minimal overlap, and varying image quality. To address these challenges, we propose RetinaRegNet, a multi-stage image registration model with zero-shot generalizability across multiple retinal imaging modalities. RetinaRegNet begins by extracting image features using a pretrained latent diffusion model.
View Article and Find Full Text PDFNat Commun
January 2025
Space Research Institute, Austrian Academy of Sciences, Graz, Austria.
Satellite laser ranging and space debris laser ranging are two closely related range measurement techniques with slightly different setups relying on different lasers. Satellite laser ranging measures light reflections of corner cube retro reflectors at mm-level range precision. Space debris laser ranging gathers diffuse reflections from the whole space debris object and offers a precision down to the sub meter-level.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
We present velocity-map imaging (VMI) of photoelectrons detached from anions using an optical parametric amplifier operating at a repetition rate as high as 100 kHz. The light source generates femtosecond (fs) laser pulses tunable from near-infrared to ultraviolet (310-2600 nm), which interact synchronously with mass-selected anion bunches. We demonstrate this technique by measuring two-dimensional projections of photoelectrons ejected from silver trimer anions, Ag3-, across a photon energy range from 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!