The purpose of this work is to investigate the effect of the WC content on the surface characteristics and nanoindentation behaviors of WC/Ni-based composite laser-clad coatings. Four NiCrSiBC coatings with WC wt% of 30%, 40%, 50%, and 60%, respectively, were clad on carbon steel substrates using a laser. The morphologies and phase compositions of four clad coatings were comparatively observed. In addition, the hardness and elastic modulus values of the four coatings were measured and quantitatively calculated. As a result, with the increase in WC, the coating grains were more refined. Meanwhile, cracks and WC particle breakage occurred in the 50-60% WC coatings, whereas this was not found in the 30-40% WC coatings. When the WC content increased from 40% up to 50%, the coating hardness and elastic modulus significantly increased. However, a further increase in WC from 50% to 60% did not result in considerable improvement in coating quality but considerably worsened the coating's cracking behavior instead. Therefore, for WC/Ni-based composite coatings, a threshold exists for the WC content, and this value was 50% within the experimental scope of this study.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9505076 | PMC |
http://dx.doi.org/10.3390/ma15186309 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!