Fungi in Mycelium-Based Composites: Usage and Recommendations.

Materials (Basel)

Institute of Interior Design and Industrial Design, Faculty of Architecture, Poznan University of Technology, 60-965 Poznań, Poland.

Published: September 2022

Mycelium-Based Composites (MBCs) are innovative engineering materials made from lignocellulosic by-products bonded with fungal mycelium. While some performance characteristics of MBCs are inferior to those of currently used engineering materials, these composites nevertheless prove to be superior in ecological aspects. Improving the properties of MBCs may be achieved using an adequate substrate type, fungus species, and manufacturing technology. This article presents scientifically verified guiding principles for choosing a fungus species to obtain the desired effect. This aim was realized based on analyses of scientific articles concerning MBCs, mycological literature, and patent documents. Based on these analyses, over 70 fungi species used to manufacture MBC have been identified and the most commonly used combinations of fungi species-substrate-manufacturing technology are presented. The main result of this review was to demonstrate the characteristics of the fungi considered optimal in terms of the resulting engineering material properties. Thus, a list of the 11 main fungus characteristics that increase the effectiveness in the engineering material formation include: rapid hyphae growth, high virulence, dimitic or trimitic hyphal system, white rot decay type, high versatility in nutrition, high tolerance to a substrate, environmental parameters, susceptibility to readily controlled factors, easy to deactivate, saprophytic, non-mycotoxic, and capability to biosynthesize natural active substances. An additional analysis result is a list of the names of fungus species, the types of substrates used, the applications of the material produced, and the main findings reported in the scientific literature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9505859PMC
http://dx.doi.org/10.3390/ma15186283DOI Listing

Publication Analysis

Top Keywords

fungus species
12
mycelium-based composites
8
engineering materials
8
based analyses
8
engineering material
8
fungi
4
fungi mycelium-based
4
composites usage
4
usage recommendations
4
recommendations mycelium-based
4

Similar Publications

A novel aerobic marine bacterium, FRT2, isolated from surface water of a fishing port in Fukui, Japan, was characterised based on phylogenomic and phylogenetic analyses combined with classical phenotypic and chemotaxonomic characterisations. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain FRT2 clustered with genus Leeuwenhoekiella. Closest relatives of FRT2 were Leeuwenhoekiella palythoae KMM 6264 and Leeuwenhoekiella nanhaiensis G18 with 16S rRNA gene sequence identities of 95.

View Article and Find Full Text PDF

Iron plays a prominent role in various biological processes and is an essential element in almost all organisms, including plant-pathogenic fungi. As a transition element, iron occurs in two redox states, Fe and Fe, the transition between which generates distinct reactive oxygen species (ROS) such as HO, OH anions, and toxic OH· radicals. Thus, the redox status of Fe determines ROS formation in pathogen attack and plant defense and governs the outcome of pathogenic interactions.

View Article and Find Full Text PDF

Four halophilic archaeal strains were isolated from sea salt and a saline lake in China. Based on phylogenetic and phylogenomic analyses, the four strains are related to the genera of Halobellus, Halobaculum, and Halorarum within the family Haloferacaceae. The four strains possess genes responsible for carotenoid synthesis, maintenance of a high internal salt concentration, as well as diverse enzymes with biotechnological potential.

View Article and Find Full Text PDF

Cholesterol-terminated cationic lipidated oligomers (CLOs) as a new class of antifungals.

J Mater Chem B

January 2025

Drug Delivery, Disposition, and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC, 3052, Australia.

Infections caused by fungal pathogens are a global health problem, and have created an urgent need for new antimicrobial strategies. This report details the synthesis of lipidated 2-vinyl-4,4-dimethyl-5-oxazolone (VDM) oligomers an optimized Cu(0)-mediated reversible-deactivation radical polymerization (RDRP) approach. Cholesterol-Br was used as an initiator to synthesize a library of oligo-VDM (degree of polymerisation = 5, 10, 15, 20, and 25), with an α-terminal cholesterol group.

View Article and Find Full Text PDF

Background: The removal of preformed antibodies with cleaving enzyme like IdeS (Imlifidase) has demonstrated therapeutic potential in organ transplantation for sensitized recipients. However, preformed xenoreactive antibodies (XAbs) against porcine glycans are predominantly IgM and considered detrimental in pig-to-human xenotransplantation.

Methods: Recombinant IceM, an endopeptidase cleaving IgM, was generated in Escherichia coli.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!