In this paper, the analysis of electrochemical corrosion performance and mechanical strength of weld joints of aluminum 6061 in two-heat treatment conditions was performed. The joints were produced by gas metal arc welding in pulsed mode. The original material exhibited precipitates of β and β" phases in a volume fraction (Vf) of 2.35%. When it was subjected to a solubilization process, these phases were present in a Vf = 2.97%. This increase is due to their change in shape and distribution in clusters within the aluminum matrix. After the welding process, the best sample in the solubilization condition reached 117 MPa, while the original material achieved 104 MPa, but all samples showed a fracture in the fusion zone. This is attributed to the heat input that produces high and low hardness zones along the heat-affected zone and the welding zone, respectively. Moreover, the change in microstructure and phase composition creates a galvanic couple, susceptible to electrochemical corrosion, which is more evident in the heat-affected zone than in the other weld regions, exhibiting uniform and localized corrosion, as was evident by electrochemical impedance spectroscopy. The heat from the welding process negatively affects the corrosion resistance, mainly in the heat-affected zone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9501936PMC
http://dx.doi.org/10.3390/ma15186226DOI Listing

Publication Analysis

Top Keywords

heat-affected zone
12
corrosion performance
8
performance mechanical
8
mechanical strength
8
aluminum 6061
8
gas metal
8
metal arc
8
arc welding
8
electrochemical corrosion
8
original material
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!