Duplex stainless steels exhibit an excellent combination of corrosion resistance and strength and are increasingly being manufactured through powder metallurgy (PM) to produce large, near-net-shaped components, such as those used for offshore applications. Hot isostatic pressing (HIP) is often used for PM production, in which pre-alloyed powders are compacted under high pressures and temperatures. Recent developments in HIP technology enable fast cooling as part of the process cycle, reaching cooling rates comparable to oil quenching or even faster. This enables the integrated solution annealing of duplex stainless steels directly after compaction. In contrast to the conventional HIP route, which requires another separate solution annealing step after compaction, the integrated heat treatment within the HIP process saves both energy and time. Due to this potential gain, HIP compaction at a high pressure of 170 MPa and 1150 °C with integrated solution annealing for the production of duplex stainless steels was investigated in this work. Firstly, the focus was to investigate the influence of pressure on the phase stability during the integrated solution annealing of the steel X2CrNiMoN22-5-3. Secondly, the steel X2CrNiMoCuWN25-7-4, which is highly susceptible to sigma phase embrittlement, was used to investigate whether the cooling rates used in the HIP are sufficient for preventing the formation of this brittle microstructural constituent. This work shows that the high pressure used during the solution heat treatment stabilizes the austenite. In addition, it was verified that the cooling rates during quenching stage in HIP are sufficient for preventing the formation of the sigma phase in the X2CrNiMoCuWN25-7-4 duplex stainless steel.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503689PMC
http://dx.doi.org/10.3390/ma15186224DOI Listing

Publication Analysis

Top Keywords

duplex stainless
20
stainless steels
16
solution annealing
16
heat treatment
12
cooling rates
12
integrated solution
12
hot isostatic
8
isostatic pressing
8
integrated heat
8
high pressure
8

Similar Publications

Article Synopsis
  • The study focused on dissimilar laser welding of AISI 1060 carbon steel and Duplex Stainless Steel 2205, using both experimental and numerical methods to analyze the impact of welding parameters.
  • The increase in laser power significantly influenced the melt pool depth, which rose from 0.4 mm to 1.4 mm when power was ramped up from 250 to 450 W, and the resultant microstructure varied between the two materials with distinct solidification patterns.
  • Tensile test results indicated that the carbon steel side exhibited brittle fracture, while the Duplex Stainless Steel showed a ductile fracture, highlighting the differing mechanical properties due to their respective microstructures and the transition towards ductility with increased laser energy density.
View Article and Find Full Text PDF

Dynamic Variation in the Semiconductive Tendency of the Passive Film on Duplex Stainless Steel in Corrosion Environments.

Materials (Basel)

December 2024

Department of Materials Science and Engineering, Andong National University, 1375 Gyeongdong-ro, Andong 36729, Gyeongbuk, Republic of Korea.

Duplex stainless steels, known for their excellent corrosion resistance, are employed in a variety of chloride solutions-acidic, neutral, and alkaline-due to a stable passive film that forms on their surfaces. This study involved polarization tests, EIS (Electrochemical Impedance Spectroscopy) measurements, Mott-Schottky plots, and XPS (X-Ray Photoelectron Spectroscopy) analyses in both static and dynamic conditions across acidic (1NaCl + 0.1N HCl, pH 1.

View Article and Find Full Text PDF

Effect of preferential growth of Shewanella oneidensis MR-1 on microbial corrosion of constituent phases of 2205 duplex stainless steel.

Bioelectrochemistry

November 2024

Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China.

Article Synopsis
  • * In the study, Shewanella oneidensis MR-1 bacteria showed a higher tendency to attach to the ferrite phase, leading to more biofilm formation compared to the austenite phase, as confirmed by atomic force microscopy (AFM).
  • * The presence of S. oneidensis MR-1 exacerbated pitting corrosion, with deeper pits observed in biotic conditions versus sterile medium, while chromium (Cr) and nickel (Ni) contributed to a more stable passive film on the austenite phase.
View Article and Find Full Text PDF

Regulating the phase ratio between austenite and ferrite in welded joints is crucial for welding super duplex stainless steel. Nitrogen plays a significant role in maintaining an optimal phase ratio. In this study, the focusing gas channel of gas-focused plasma arc welding was utilized to introduce nitrogen into the arc plasma, which was then transferred to the weld pool.

View Article and Find Full Text PDF

Geothermal energy generation faces challenges in efficiency, partly due to restrictions on reinjection temperatures caused by scaling issues. Therefore, developing strategies to prevent scaling is critical. This study aims to simulate the scaling tendencies and corrosion effects of geothermal fluids on various construction materials used in scaling reactor/retention tank systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!