The mechanism by which folic acid (FA) or its derivatives (folates) mediates plant tolerance to sodic-alkaline stress has not been clarified in previous literature. To apply sodic-alkaline stress, maize seedlings were irrigated with 50 mM of a combined solution (1:1) of sodic-alkaline salts (NaHCO and NaCO; pH 9.7). Maize seedlings under stressed and non-stressed conditions were sprayed with folic acid (FA) at 0 (distilled water as control), 0.05, 0.1, and 0.2 mM. Under sodic-alkaline stress, FA applied at 0.2 mM significantly improved shoot fresh weight (95%), chlorophyll (Chl a (41%), Chl b (57%), and total Chl (42%)), and carotenoids (27%) compared to the untreated plants, while root fresh weight was not affected compared to the untreated plants. This improvement was associated with a significant enhancement in the cell-membrane stability index (CMSI), relative water content (RWC), free amino acids (FAA), proline, soluble sugars, K, and Ca. In contrast, Na, Na/K ratio, HO, malondialdehyde (MDA), and methylglycoxal (MG) were significantly decreased. Moreover, seedlings treated with FA demonstrated significantly higher activities of antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POX), catalase (CAT), and ascorbate peroxidase (APX) compared to the untreated plants. The molecular studies using RT-qPCR demonstrated that FA treatments, specifically at 0.2 mM, enhanced the K/Na selectivity and the performance of photosynthesis under alkaline-stress conditions. These responses were observed through up-regulation of the expression of the high-affinity potassium-transporter protein (), the major core protein of photosystem II (), and the activity of the first enzyme of carbon fixation cycle in C4 plants () by 74, 248, and 225% over the untreated plants, respectively. Conversely, there was a significant down-regulation in the expression and by 48.2 and 27.8%, respectively, compared to the untreated plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9506096PMC
http://dx.doi.org/10.3390/life12091327DOI Listing

Publication Analysis

Top Keywords

untreated plants
20
sodic-alkaline stress
16
compared untreated
16
folic acid
12
tolerance sodic-alkaline
8
maize seedlings
8
fresh weight
8
plants
6
sodic-alkaline
5
untreated
5

Similar Publications

The current study aimed to detect the mutagenic impacts of aflatoxin B1 (AFB1), which is produced by Aspergillus group fungi, via a high-plant genotoxicity test. Different durations of treatment (3 h, 6 h, and 12 h) were used to treat the Vicia faba root tips with varying concentrations of Aflatoxin B1 (AFB1) following the approved protocol for plant assays published by the International Program on Chemical Safety (IPCS) and the World Health Organization (WHO). The data obtained indicated that AFB1 not only has the ability to induce various alterations in the process of mitosis, ranging from increasing to decreasing mitotic and phase indices but also leads to many mitotic aberrations.

View Article and Find Full Text PDF

White adipose tissues and skeletal muscles as a target of chrysin during the treatment of obesity in rats.

Sci Rep

January 2025

Department of Biochemistry, Medical Research Institute, Alexandria University, 165 El-Horreya Avenue, EL-Hadara, POB 21561, Alexandria, Egypt.

Obesity is a rapidly growing epidemic that continues to be a major severe health problem due to its association with various adverse health consequences. Since 1975, the WHO estimates that the prevalence of obesity has tripled globally. Chrysin is a flavone that is mostly found in the Passiflore species of plants and in propolis.

View Article and Find Full Text PDF

Textile wastewater poses significant risks if discharged untreated, especially due to the presence of synthetic dyes, salts, and heavy metals. As a result, constructed wetlands have emerged as a promising solution for sustainable textile wastewater management. In this context, this study evaluates a micro-scale vertical subsurface flow constructed wetland (VSSFCW) for treating textile wastewater.

View Article and Find Full Text PDF

Plant-based macromolecules such as lignocellulosic fibers are one of the promising bio-resources to be utilized as reinforcement for developing sustainable composites. However, due to their hydrophilic nature and weak interfacial bonding with polymer matrices, these fibers are mostly incompatible with biopolymers. The current research endeavor explores the novel eco-friendly oxalic acid (CHO.

View Article and Find Full Text PDF

When ingested as part of a blood meal, the antiparasitic drug ivermectin kills mosquitoes, making it a candidate for mass drug administration (MDA) in humans and livestock to reduce malaria transmission. When administered to livestock, most ivermectin is excreted unmetabolized in the dung within 5 days post administration. Presence of ivermectin, has been shown to adversely affect dung colonizers and dung degradation in temperate settings; however, those findings may not apply to, tropical environment, where ivermectin MDA against malaria would occur.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!