The leaf photosynthetic capacity, leaf N partitioning, non-structural carbohydrate content, C, N, and P contents of endangered seedlings exposed to different light intensities were compared in this study. The most favorable light condition for the survival and growth of seedlings in the present study was 100% full sunlight, as this induced higher , PNUE, , , , and NSC content relative to shade-treated seedlings. PNUE, , , and in seedling leaves decreased under 40% and 10% full sunlight, while increased, indicating that shade increased the light capture efficiency of photosystem (PS) II but decreased electron transfer from PSII to PSI. Furthermore, leaf N content increased with shade intensity, revealing an adaptive strategy for poor light environments. Additionally, the smallest leaf biomass, , WUE, and values and C:N and C:P ratios in stems and leaves were observed under 10% full sunlight. These results indicate that seedlings growing under 40% full sunlight will benefit . conservation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9506466PMC
http://dx.doi.org/10.3390/life12091310DOI Listing

Publication Analysis

Top Keywords

full sunlight
16
non-structural carbohydrate
8
seedlings exposed
8
exposed light
8
light intensities
8
10% full
8
seedlings
5
light
5
photosynthesis nitrogen
4
nitrogen allocation
4

Similar Publications

TiO has broad prospects in reducing the safety risks posed by emerging pollutants in water environments. However, the high recombination rate of photogenerated carriers limits the activity and photon utilization efficiency of TiO. In this study, mesoporous TiO (m-TiO) and ultra-thin g-CN nanosheets were composited using a hydrothermal method, with the m-TiO tightly and uniformly wrapped by g-CN.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are exploring renewable energy sources like solar cell technology to replace fossil fuels and reduce environmental impacts, focusing on lead-free halide perovskite compounds CsXInBr (where X is Cu or Ag).
  • The study found that CsAgInBr and CsCuInBr compounds exhibit desirable properties for solar applications, with calculated optical gaps and high absorption coefficients, particularly noting CsCuInBr's effectiveness in absorbing sunlight due to its high infrared absorption.
  • The analysis utilized the Abinit computational package and density functional theory (DFT) to evaluate the electronic, structural, and optical characteristics of these compounds, framing potential applications in solar cells and detectors.
View Article and Find Full Text PDF

Theoretical Study on the Excitation Energy Transfer Dynamics in the Phycoerythrin PE555 Light-Harvesting Complex.

ACS Omega

December 2024

Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials and Micro-Nano Devices, Renmin University of China, Beijing 100872, China.

Photosynthesis in nature begins with light harvesting. The special pigment-protein complex converts sunlight into electron excitation that is transmitted to the reaction center, which triggers charge separation. Evidence shows that quantum coherence between electron excited states is important in the excitation energy transfer process.

View Article and Find Full Text PDF

The synthesis of crystalline covalent organic frameworks (COFs) has in principle relied on reversible dynamic chemistry. A general method to synthesize irreversibly bonded COFs is urgently demanded for driving the COF chemistry to a new era. Here we report a universal two-step method for the straightforward synthesis of irreversibly amide-linked COF (AmCOF) membranes by autocatalytic interfacial polymerization (AIP).

View Article and Find Full Text PDF

Designing and optimizing photocatalysts to maximize the use of sunlight and achieve fast charge transport remains a goal of photocatalysis technology. Herein, a full-spectrum-response BiOBr:Er@BiO core-shell S-scheme heterojunction is designed with [Bi─O] tetrahedral sharing using upconversion (UC) functionality, photothermal effects, and interfacial engineering. The UC function of Er and plasmon resonance effect of BiO greatly improves the utilization of sunlight.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!