Human Primary Odontoblast-like Cell Cultures-A Focused Review Regarding Cell Characterization.

J Clin Med

Central Interdisciplinary Ambulance in the School of Dentistry, University of Münster, D-48149 Münster, Germany.

Published: September 2022

Cell cultures can provide useful in vitro models. Since odontoblasts are postmitotic cells, they cannot be expanded in cell cultures. Due to their extension into the dentin, injuries are inevitable during isolation. Therefore, "odontoblast-like" cell culture models have been established. Nowadays, there is no accepted definition of odontoblast-like cell cultures, i.e., isolation, induction, and characterization of cells are not standardized. Furthermore, no quality-control procedures are defined yet. Thus, the aim of this review was to evaluate both the methods used for establishment of cell cultures and the validity of molecular methods used for their characterization. An electronic search was performed in February 2022 using the Medline, Scopus, and Web of Science database identifying publications that used human primary odontoblast-like cell cultures as models and were published between 2016 and 2022. Data related to (I) cell culture conditions, (II) stem cell screening, (III) induction media, (IV) mineralization, and (V) cell characterization were analyzed. The included publications were not able to confirm an odontoblast-like nature of their cell cultures. For their characterization, not only a similarity to dentin but also a distinction from bone must be demonstrated. This is challenging, due to the developmental and evolutionary proximity of these two tissue types.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9501234PMC
http://dx.doi.org/10.3390/jcm11185296DOI Listing

Publication Analysis

Top Keywords

cell cultures
24
cell
12
odontoblast-like cell
12
human primary
8
primary odontoblast-like
8
cell characterization
8
cell culture
8
cultures
6
characterization
5
odontoblast-like
4

Similar Publications

Liver cancer poses a global health challenge with limited therapeutic options. Notably, the limited success of current therapies in patients with primary liver cancers (PLCs) may be attributed to the high heterogeneity of both hepatocellular carcinoma (HCCs) and intrahepatic cholangiocarcinoma (iCCAs). This heterogeneity evolves over time as tumor-initiating stem cells, or cancer stem cells (CSCs), undergo (epi)genetic alterations or encounter microenvironmental changes within the tumor microenvironment.

View Article and Find Full Text PDF

We have recently shown that fluoxetine (FX) suppressed polyinosinic-polycytidylic acid-induced inflammatory response and endothelin release in human epidermal keratinocytes, via the indirect inhibition of the phosphoinositide 3-kinase (PI3K)-pathway. Because PI3K-signaling is a positive regulator of the proliferation, in the current, highly focused follow-up study, we assessed the effects of FX (14 µM) on the proliferation and differentiation of human epidermal keratinocytes. We found that FX exerted anti-proliferative actions in 2D cultures (HaCaT and primary human epidermal keratinocytes [NHEKs]; 48- and 72-h; CyQUANT-assay) as well as in 3D reconstructed epidermal equivalents (48-h; Ki-67 immunohistochemistry).

View Article and Find Full Text PDF

Background: Preimplantation embryos in vivo are exposed to various growth factors in the female reproductive tract that are absent in in vitro embryo culture media. Cell-free fat extract exerts antioxidant, anti-ageing, and ovarian function-promoting effects. However, its effects on embryo quality are yet to be investigated.

View Article and Find Full Text PDF

Background: Glioblastoma (GBM) is a lethal brain tumor characterized by the glioma stem cell (GSC) niche. The V-ATPase proton pump has been described as a crucial factor in sustaining GSC viability and tumorigenicity. Here we studied how patients-derived GSCs rely on V-ATPase activity to sustain mitochondrial bioenergetics and cell growth.

View Article and Find Full Text PDF

This study aims to synthesize a new localized drug delivery system of bioglass, polyvinyl alcohol (PVA), cellulose (CNC), and sodium alginate (SA) beads as a carrier for methotrexate (MTX) drugs for the treatment of osteosarcoma. Methotrexate /Bioglass-loaded Polyvinyl/Cellulose/Sodium alginate biocomposite beads were prepared via the dropwise method with different concentrations of (65%SiO-30%CaO- 5%PO) bioglass. Samples were named B0, S0, S1, S2, and S3, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!