One of the most promising applications of ionic liquids (ILs) with 1-butyl-3-methylimidazolium (bmim) cation is based on their unique ability to dissolve and fractionate lignocellulosic biomass, allowing for the development of green biorefining technologies. A complete dissolution of lignocellulose requires prolonged treatment at elevated temperatures, which can cause the partial degradation of ILs. In the present study, a combination of various analytical techniques (GC-MS, HPLC-HRMS, 2D-NMR, synchronous thermal analysis) was used for the comprehensive characterization of bmim acetate, chloride, and methyl sulfate degradation products formed at 150 °C during 6- and 24-h thermal treatment. A number of volatile and non-volatile products, including monomeric and dimeric alkyl substituted imidazoles, alcohols, alkyl amines, methyl and butyl acetates, and N-alkylamides, was identified. By thermal lability, ILs can be arranged in the following sequence, coinciding with the decrease in basicity of the anion: [bmim]OAc > [bmim]Cl > [bmim]MeSO4. The accumulation of thermal degradation products in ILs, in turn, affects their physico-chemical properties and thermal stability, and leads to a decrease in the decomposition temperature, a change in the shape of the thermogravimetric curves, and the formation of carbon residue during pyrolysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9502186PMC
http://dx.doi.org/10.3390/ijms231810966DOI Listing

Publication Analysis

Top Keywords

thermal stability
8
ionic liquids
8
degradation products
8
thermal
5
insights thermal
4
stability 1-butyl-3-methylimidazolium-based
4
1-butyl-3-methylimidazolium-based ionic
4
liquids promising
4
promising applications
4
applications ionic
4

Similar Publications

Alveolar ridge loss presents difficulties for implant placement and stability. To address this, alveolar ridge preservation (ARP) is required to maintain bone and avoid the need for ridge augmentation using socket grafting. In this study, a scaffold for ARP was created by fabricating a 3D porous dense microfiber silk fibroin (mSF) embedded in poly(vinyl alcohol) (PVA), which mimics the osteoid template.

View Article and Find Full Text PDF

Peptide-Ca chelates are innovative calcium supplements. possesses nutritional advantages for preparing calcium-binding peptides (CBPs), although there are limited studies on this subject. Therefore, this paper investigated the optimal condition for preparing CBPs and peptide-calcium chelates (LP-Ca), along with analyzing their microstructure, calcium-binding mechanisms, stability, and calcium transporting efficacy.

View Article and Find Full Text PDF

Single use plastics are a leading source of microplastics that have been detected along the food chain. This study evaluated the potential of starch (ST) and carrageenan (CRG) in packaging film formulation. CRG isolated from the seaweed (SW) was blended with starch and cast to obtain films whose moisture content (MC), total soluble matter (TSM), degree of solubility (DS), water vapor permeability (WVP), opacity (O), contact angles (CA), moisture absorption (MA), and percent elongation (PE) were evaluated.

View Article and Find Full Text PDF

Tenofovir alafenamide (TAF) is currently administered orally to patients for treatment of chronic hepatitis B virus infection and as a part of a combination therapy for human immunodeficiency virus (HIV) infection. A long-acting delivery system could provide several advantages as a formulation strategy for this drug including improved patient adherence, convenience, more consistent drug levels and potentially fewer side effects. To date, the vast majority of polymer-based long-acting delivery systems have been prepared from poly(lactide--glycolide) [1].

View Article and Find Full Text PDF

Supramolecular Ionic Gels for Stretchable Electronics and Future Directions.

ACS Mater Au

January 2025

Department of Electrical and Electronic Engineering, Kyushu Institute of Technology, 1-1 Sensuicho, Tobataku, Kitakyushu, Fukuoka 804-8550, Japan.

Ionic gels (IGs), ionic liquids (ILs) dispersed in polymers, exhibit extremely low vapor pressure, electrochemical and thermal stability, and excellent mechanical characteristics; therefore, they are used for fabricating stretchable sensors, electrochemical transistors, and energy storage devices. Although such characteristics are promising for flexible and stretchable electronics, the mechanical stress-induced ruptured covalent bonds forming polymer networks cannot recover owing to the irreversible interaction between the bonds. Physical cross-linking via noncovalent bonds enables the interaction of polymers and ILs to form supramolecular IGs (SIGs), which exhibit favorable characteristics for wearable devices that conventional IGs with noncovalent bonds cannot achieve.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!