This work contains an analysis of the impact of modifying a bioresorbable polymer-polycaprolactone (PCL)-with various additives on its antibacterial properties. To this end, samples of PCL filament containing various content levels of graphene (GNP), 0.5%, 5%, 10%, were obtained using injection molding. Polymer samples without additives were used for comparison. The next step was to assess the antimicrobial impact of the preparations under study against the following microorganisms: ATCC 25293, ATCC 25922, ATCC 10231. Effective bactericidal activity of PCL with small amount of GNP, especially against and was confirmed. A decrease in this property or even multiplication of microorganisms was observed in direct proportion to the graphene content in the samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9500631PMC
http://dx.doi.org/10.3390/ijms231810899DOI Listing

Publication Analysis

Top Keywords

graphene content
8
antibacterial properties
8
influence graphene
4
content antibacterial
4
properties polycaprolactone
4
polycaprolactone work
4
work analysis
4
analysis impact
4
impact modifying
4
modifying bioresorbable
4

Similar Publications

Aluminum and its alloys are widely used in the busbar structures of electrolytic aluminum production. However, they are prone to corrosion and wear damage during use, leading to a decline in current-transmission efficiency and potentially causing safety issues. To repair damaged aluminum busbars, this paper explores the feasibility of using cold spraying technology for surface restoration.

View Article and Find Full Text PDF

Composites are increasingly being modified with various types of fillers and nanofillers. These materials have attracted much attention due to the improvement in their properties compared to traditional composite materials. In the case of advanced technologies, adding additives to the matrix has created a number of possibilities for use in many industries, from electronics to mechanics.

View Article and Find Full Text PDF

Easy One-Pot Decoration of Graphene Oxide Nanosheets by Green Silver Nanoparticles.

Int J Mol Sci

January 2025

Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.

In this study, we developed a facile one-pot synthesis of a nanocomposite consisting of silver nanoparticles (AgNPs) growing over graphene oxide (GO) nanoflakes (AgNPs@GO). The process consists of the in situ formation of AgNPs in the presence of GO nanosheets via the spontaneous decomposition of silver(I) acetylacetonate (Ag(acac)) after dissolution in water. This protocol is compared to an ex situ approach where AgNPs are added to a waterborne GO nanosheet suspension to account for any attractive interaction between preformed nanomaterials.

View Article and Find Full Text PDF

ConspectusLithium-ion batteries are recognized as an important electrochemical energy storage technology due to their superior volumetric and gravimetric energy densities. Graphite is widely used as the negative electrode, and its adoption enabled much of the modern portable electronics technology landscape. However, developing markets, such as electric vehicles and grid-scale storage, have increased demands, including higher energy content and a diverse materials supply chain.

View Article and Find Full Text PDF

This study aims to determine the extent to which coating composition and workpiece properties impact machinability and tool selection when turning Compacted Graphite Iron (CGI) under extreme roughing conditions. Two CGI workpieces, differing in pearlite content and graphite nodularity, were machined at a cutting speed of 180 m/min, feed rate of 0.18 mm/rev, and depth of cut of 3 mm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!