This work contains an analysis of the impact of modifying a bioresorbable polymer-polycaprolactone (PCL)-with various additives on its antibacterial properties. To this end, samples of PCL filament containing various content levels of graphene (GNP), 0.5%, 5%, 10%, were obtained using injection molding. Polymer samples without additives were used for comparison. The next step was to assess the antimicrobial impact of the preparations under study against the following microorganisms: ATCC 25293, ATCC 25922, ATCC 10231. Effective bactericidal activity of PCL with small amount of GNP, especially against and was confirmed. A decrease in this property or even multiplication of microorganisms was observed in direct proportion to the graphene content in the samples.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9500631 | PMC |
http://dx.doi.org/10.3390/ijms231810899 | DOI Listing |
Materials (Basel)
January 2025
School of Physical and Technology, Wuhan University, Wuhan 430072, China.
Aluminum and its alloys are widely used in the busbar structures of electrolytic aluminum production. However, they are prone to corrosion and wear damage during use, leading to a decline in current-transmission efficiency and potentially causing safety issues. To repair damaged aluminum busbars, this paper explores the feasibility of using cold spraying technology for surface restoration.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Faculty of Marine Engineering, Gdynia Maritime University, 81-225 Gdynia, Poland.
Composites are increasingly being modified with various types of fillers and nanofillers. These materials have attracted much attention due to the improvement in their properties compared to traditional composite materials. In the case of advanced technologies, adding additives to the matrix has created a number of possibilities for use in many industries, from electronics to mechanics.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.
In this study, we developed a facile one-pot synthesis of a nanocomposite consisting of silver nanoparticles (AgNPs) growing over graphene oxide (GO) nanoflakes (AgNPs@GO). The process consists of the in situ formation of AgNPs in the presence of GO nanosheets via the spontaneous decomposition of silver(I) acetylacetonate (Ag(acac)) after dissolution in water. This protocol is compared to an ex situ approach where AgNPs are added to a waterborne GO nanosheet suspension to account for any attractive interaction between preformed nanomaterials.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Institute of Energy: Sustainability, Environment and Equity (I:SEE), State University of New York at Stony Brook, Stony Brook, New York 11794, United States.
ConspectusLithium-ion batteries are recognized as an important electrochemical energy storage technology due to their superior volumetric and gravimetric energy densities. Graphite is widely used as the negative electrode, and its adoption enabled much of the modern portable electronics technology landscape. However, developing markets, such as electric vehicles and grid-scale storage, have increased demands, including higher energy content and a diverse materials supply chain.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
McMaster Manufacturing Research Institute, McMaster University, Hamilton, ON L8P 0A6, Canada.
This study aims to determine the extent to which coating composition and workpiece properties impact machinability and tool selection when turning Compacted Graphite Iron (CGI) under extreme roughing conditions. Two CGI workpieces, differing in pearlite content and graphite nodularity, were machined at a cutting speed of 180 m/min, feed rate of 0.18 mm/rev, and depth of cut of 3 mm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!