Polymers remain an integral part of denture fabrication materials, specifically polymethylmetacrylate (PMMA). PMMA has been extensively used, particularly in construction as a denture base material. Nonetheless, various challenges, including microbial threats in the form of candidiasis occurrence, still remain a biological challenge to denture wearers. The present article comprehensively reviews the biomodifications introduced to denture components, in particular denture base material, to improve the overall biological properties, together with physical, mechanical, structural integrity, and optical properties. In addition, fundamental information specifically to PMMA as a conventional denture base material and the causative aetiological microbial agents for biological threat to dentures are explored.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9499318PMC
http://dx.doi.org/10.3390/ijms231810426DOI Listing

Publication Analysis

Top Keywords

denture base
12
base material
12
biological properties
8
denture
6
modification polymer
4
polymer based
4
based dentures
4
biological
4
dentures biological
4
properties current
4

Similar Publications

Statement Of Problem: Staining at the gingival margin could impact denture longevity, but the behavior of gingival colored composite resins (GCCs) in this area remains unclear.

Purpose: This in vitro study evaluated surface staining, microleakage, and push-out bond strength at the gingival margin of artificial teeth, comparing two consistencies of GCCs with two resin base materials.

Material And Methods: Specimens included artificial teeth (Ivostar; Ivoclar AG) and two acrylic resin base materials: conventional (Ondacryl; Clássico) and high-impact (Diamond D; Keystone Industries) (n=300).

View Article and Find Full Text PDF

Development of an antimicrobial tissue conditioner with quaternary ammonium methacryloxy silane (K18): An in vitro study.

J Prosthodont Res

January 2025

Department of Comprehensive Dentistry, UT Health San Antonio, San Antonio, USA.

Purpose: To determine the effects of K18 quaternary ammonium methacryloxy silane (QAS) on tissue conditioner materials and their antimicrobial properties.

Methods: 30% K18 QAS in methyl methacrylate (MMA; K18-MMA; 0%, 15%, and 20% w/w) was incorporated into a commercial tissue conditioner (Coe comfort). The degree of curing (Shore A hardness), hydrophilicity (contact angle), flow, liquid sorption, mass loss, and antimicrobial properties of Streptococcus mutans, Streptococcus sanguinis, and Candida albicans were determined.

View Article and Find Full Text PDF

Purpose: This systematic review evaluated the effect of different printing orientations on the physical-mechanical properties and accuracy of resin denture bases and related specimens.

Study Selection: Utilizing PRISMA 2020 guidelines, a comprehensive search of PubMed, Web of Science, Cochrane, and Scopus databases was conducted until June 2024. Included studies examined the accuracy, volumetric changes, and mechanical or physical properties of 3D-printed denture bases in various orientations.

View Article and Find Full Text PDF

In vitro analysis of composition profiles of resins for 3D printing of dentures.

J Dent

January 2025

Clinic of General-, Special Care- and Geriatric Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland. Electronic address:

Objective: This study aimed to investigate the resin compounds from CAD-CAM 3D-printed denture resins, focusing on the identification and classification of free monomers and other components. The primary objective was to determine the chemical profile of these 3D-prinding resin materials.

Methods: Four 3D-printed denture resins, two base materials (1: DentaBASE, Asiga Ltd.

View Article and Find Full Text PDF

Wooden Plate Denture Reproduced Using Materials and Methods From 400 Years Ago.

Cureus

December 2024

Department of Oral and Maxillofacial Surgery, National Hospital Organization, Kyoto Medical Center, Kyoto, JPN.

This study aimed to reproduce a complete wooden plate denture, which was the first in the world to retain suction under negative pressure, using the same materials and methods from 400 years ago (i.e., the Edo period) to verify its masticatory performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!