Effect of the TrFE Content on the Crystallization and SSA Thermal Fractionation of P(VDF--TrFE) Copolymers.

Int J Mol Sci

POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain.

Published: September 2022

In this contribution, we study the effect of trifluoro ethylene (TrFE) comonomer content (samples with 80/20, 75/25, and 70/30 VDF/TrFE molar ratios were used) on the crystallization in P(VDF--TrFE) in comparison with a PVDF (Poly(vinylidene fluoride)) homopolymer. Employing Polarized Light Optical Microscopy (PLOM), the growth rates of spherulites or axialites were determined. Differential Scanning Calorimetry (DSC) was used to determine overall crystallization rates, self-nucleation, and Successive Self-nucleation and Annealing (SSA) thermal fractionation. The ferroelectric character of the samples was explored by polarization measurements. The results indicate that TrFE inclusion can limit the overall crystallization of the copolymer samples, especially for the ones with 20 and 25% TrFE. Self-nucleation measurements in PVDF indicate that the homopolymer can be self-nucleated, exhibiting the classic three . However, the increased nucleation capacity in the copolymers provokes the absence of the self-nucleation . The PVDF displays a monomodal distribution of thermal fractions after SSA, but the P(VDF--TrFE) copolymers do not experience thermal fractionation, apparently due to TrFE incorporation in the PVDF crystals. Finally, the maximum and remnant polarization increases with increasing TrFE content up to a maximum of 25% TrFE content, after which it starts to decrease due to the lower dipole moment of the TrFE defect inclusion within the PVDF crystals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9499170PMC
http://dx.doi.org/10.3390/ijms231810365DOI Listing

Publication Analysis

Top Keywords

trfe content
12
thermal fractionation
12
trfe
8
ssa thermal
8
pvdf--trfe copolymers
8
25% trfe
8
pvdf crystals
8
pvdf
5
crystallization
4
content crystallization
4

Similar Publications

Scaffolds are of great interest in tissue engineering associated with regenerative medicine owing to their ability to mimic biological structures and provide a support for a new tissue formation. Several techniques are used to produce biological scaffolds; among them, far-field electrospinning (FFES) process is widely used due to its versatility in producing promising structures similar to native tissues owing to the electrospun nanofibers. On the other hand, near-field electrospinning (NFES) has been investigated due to the possibility of creating scaffolds with suitable architecture for its use in specific biological tissues.

View Article and Find Full Text PDF

A Comparison of White and Yellow Seminal Plasma Phosphoproteomes Obtained from Turkey () Semen.

Int J Mol Sci

September 2024

Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland.

Seminal plasma is rich in proteins originating from various male reproductive organs. The phosphorylation of these proteins can significantly impact sperm motility, capacitation, and acrosome reaction. Phosphoproteomics identifies, catalogues, and characterizes phosphorylated proteins.

View Article and Find Full Text PDF

This study investigates bioelectric stimulation's role in tissue regeneration by enhancing the piezoelectric properties of tissue-engineered grafts using annealed poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) scaffolds. Annealing at temperatures of 80°C, 100°C, 120°C, and 140°C was assessed for its impact on material properties and physiological utility. Analytical techniques such as Differential Scanning Calorimetry (DSC), Fourier-Transform Infrared Spectroscopy (FTIR), and X-ray Diffraction (XRD) revealed increased crystallinity with higher annealing temperatures, peaking in β-phase content and crystallinity at 140°C.

View Article and Find Full Text PDF

Flexible Pressure Sensors Based on P(VDF-TrFE) Films Incorporated with Ag@PDA@PZT Particles.

Sensors (Basel)

August 2024

Ministry of Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei Provincial Key Laboratory of Polymers, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.

Films of piezoelectric poly(vinylidene fluoride) (PVDF) and its copolymer P(VDF-TrFE) have been studied intensively for their potential application in piezoelectric sensing devices. The present work focuses on tuning the piezoelectric properties of P(VDF-TrFE) films via incorporating Ag and polydopamine co-decorated PZT (Ag@PDA@PZT) particles. Ag@PDA@PZT particles can effectively improve the β-phase content and piezoelectric properties of P(VDF-TrFE) films.

View Article and Find Full Text PDF

Ionic Thermoelectric Generators in Vertical and Planar Topologies Based on Fluorinated Polymer Hybrid Materials with Ionic Liquids.

Macromol Rapid Commun

May 2024

Centre of Physics Universities of Minho and Porto and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal.

Ionic thermoelectrics (TEs), in which voltage generation is based on ion migration, are suitable for applications based on their low cost, high flexibility, high ionic conductivity, and wide range of Seebeck coefficients. This work reports on the development of ionic TE materials based on the poly(vinylidene fluoride-trifluoroethylene), Poly(VDF-co-TrFE), as host polymer blended with different contents of the ionic liquid, IL, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [EMIM][TFSI]. The morphology, physico-chemical, thermal, mechanical, and electrical properties of the samples are evaluated together with the TE response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!