A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Local-Forest Method for Superspreaders Identification in Online Social Networks. | LitMetric

Local-Forest Method for Superspreaders Identification in Online Social Networks.

Entropy (Basel)

Key Laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing 100191, China.

Published: September 2022

Identifying the most influential spreaders in online social networks plays a prominent role in affecting information dissemination and public opinions. Researchers propose many effective identification methods, such as k-shell. However, these methods are usually validated by simulating propagation models, such as epidemic-like models, which rarely consider the Push-Republish mechanism with attenuation characteristic, the unique and widely-existing spreading mechanism in online social media. To address this issue, we first adopt the Push-Republish (PR) model as the underlying spreading process to check the performance of identification methods. Then, we find that the performance of classical identification methods significantly decreases in the PR model compared to epidemic-like models, especially when identifying the top 10% of superspreaders. Furthermore, inspired by the local tree-like structure caused by the PR model, we propose a new identification method, namely the Local-Forest (LF) method, and conduct extensive experiments in four real large networks to evaluate it. Results highlight that the Local-Forest method has the best performance in accurately identifying superspreaders compared with the classical methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9497625PMC
http://dx.doi.org/10.3390/e24091279DOI Listing

Publication Analysis

Top Keywords

local-forest method
12
online social
12
identification methods
12
social networks
8
epidemic-like models
8
identification
5
methods
5
method superspreaders
4
superspreaders identification
4
identification online
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!