Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Identifying the most influential spreaders in online social networks plays a prominent role in affecting information dissemination and public opinions. Researchers propose many effective identification methods, such as k-shell. However, these methods are usually validated by simulating propagation models, such as epidemic-like models, which rarely consider the Push-Republish mechanism with attenuation characteristic, the unique and widely-existing spreading mechanism in online social media. To address this issue, we first adopt the Push-Republish (PR) model as the underlying spreading process to check the performance of identification methods. Then, we find that the performance of classical identification methods significantly decreases in the PR model compared to epidemic-like models, especially when identifying the top 10% of superspreaders. Furthermore, inspired by the local tree-like structure caused by the PR model, we propose a new identification method, namely the Local-Forest (LF) method, and conduct extensive experiments in four real large networks to evaluate it. Results highlight that the Local-Forest method has the best performance in accurately identifying superspreaders compared with the classical methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9497625 | PMC |
http://dx.doi.org/10.3390/e24091279 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!