In image classification with Deep Convolutional Neural Networks (DCNNs), the number of parameters in pointwise convolutions rapidly grows due to the multiplication of the number of filters by the number of input channels that come from the previous layer. Existing studies demonstrated that a subnetwork can replace pointwise convolutional layers with significantly fewer parameters and fewer floating-point computations, while maintaining the learning capacity. In this paper, we propose an improved scheme for reducing the complexity of pointwise convolutions in DCNNs for image classification based on interleaved grouped filters without divisibility constraints. The proposed scheme utilizes grouped pointwise convolutions, in which each group processes a fraction of the input channels. It requires a number of channels per group as a hyperparameter Ch. The subnetwork of the proposed scheme contains two consecutive convolutional layers K and L, connected by an interleaving layer in the middle, and summed at the end. The number of groups of filters and filters per group for layers K and L is determined by exact divisions of the original number of input channels and filters by Ch. If the divisions were not exact, the original layer could not be substituted. In this paper, we refine the previous algorithm so that input channels are replicated and groups can have different numbers of filters to cope with non exact divisibility situations. Thus, the proposed scheme further reduces the number of floating-point computations (11%) and trainable parameters (10%) achieved by the previous method. We tested our optimization on an EfficientNet-B0 as a baseline architecture and made classification tests on the CIFAR-10, Colorectal Cancer Histology, and Malaria datasets. For each dataset, our optimization achieves a saving of 76%, 89%, and 91% of the number of trainable parameters of EfficientNet-B0, while keeping its test classification accuracy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9497893 | PMC |
http://dx.doi.org/10.3390/e24091264 | DOI Listing |
Neural Netw
January 2025
School of Software, Shandong University, Jinan 250101, China; Shandong Provincial Laboratory of Future Intelligence and Financial Engineering, Yantai 264005, China. Electronic address:
Long time series forecasting has extensive applications in various fields such as power dispatching, traffic control, and weather forecasting. Recently, models based on the Transformer architecture have dominated the field of time series forecasting. However, these methods lack the ability to handle the correlation of multi-scale information and the interaction of information between variables in model design.
View Article and Find Full Text PDFISA Trans
January 2025
Department of Electronics and Telecommunication, C. V. Raman Global University, Bhubaneswar 752054, Odisha, India. Electronic address:
Early and highly accurate detection of rapidly damaging deadly disease like Acute Lymphoblastic Leukemia (ALL) is essential for providing appropriate treatment to save valuable lives. Recent development in deep learning, particularly transfer learning, is gaining a preferred trend of research in medical image processing because of their admirable performance, even with small datasets. It inspires us to develop a novel deep learning-based leukemia detection system in which an efficient and lightweight MobileNetV2 is used in conjunction with ShuffleNet to boost discrimination ability and enhance the receptive field via convolution layer succession.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Spanish Philology, University of Málaga, Málaga, Spain.
Nasalance is a valuable clinical biomarker for hypernasality. It is computed as the ratio of acoustic energy emitted through the nose to the total energy emitted through the mouth and nose (eNasalance). A new approach is proposed to compute nasalance using Convolutional Neural Networks (CNNs) trained with Mel-Frequency Cepstrum Coefficients (mfccNasalance).
View Article and Find Full Text PDFSensors (Basel)
November 2024
Department of Computer Science and Digital Technologies, University of East London, London E16 2RD, UK.
Gait recognition is a behavioral biometric technique that identifies individuals based on their unique walking patterns, enabling long-distance identification. Traditional gait recognition methods rely on appearance-based approaches that utilize background-subtracted silhouette sequences to extract gait features. While effective and easy to compute, these methods are susceptible to variations in clothing, carried objects, and illumination changes, compromising the extraction of discriminative features in real-world applications.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
Department of Electrical and Electronics Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
Background: Dental disorders are one of the most important health problems, affecting billions of people all over the world. Early diagnosis is important for effective treatment planning. Precise dental disease segmentation requires reliable tooth numbering, which may be prone to errors if performed manually.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!