Plant protein adhesive has received considerable attention because of their renewable raw material and no harmful substances such as formaldehyde. However, for the plant protein adhesive used in the field of plywood, low cost, strong water resistance, and high bonding strength were the necessary conditions for practical application. In this work, a double-network structure including hydrogen bonds and covalent bonds was built in hot-pressed peanut meal (HPM) protein (HPMP) adhesive, soybean meal (SBM) protein (SBMP) adhesive and cottonseed meal (CSM) protein (CSMP) adhesives. The ether bonds and ester bonds were the most in CSMP adhesive, followed by SBMP adhesive, while the hydrogen bond was the most in HPMP adhesive. The solubility of the HPMP, SBMP, and CSMP adhesives decreased by 14.3%, 24.2%, and 19.4%, the swelling rate decreased by 56.9%, 48.4%, and 78.5%, respectively. The boiling water strength (BWS) of HPMP (0.82 MPa), SBMP (0.92 MPa), and CSMP adhesives reached the bonding strength requirement of China National Standards class I plywood (type I, 0.7 MPa). The wet shear strength (WSS) of HPMP, SBMP, and CSMP adhesives increased by 334.5% (1.26 MPa), 246.3% (1.42 MPa), and 174.1% (1.59 MPa), respectively. This study provided a new theory and method for the development of eco-friendly plant meal protein adhesive and promotes the development of green adhesive.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9497928 | PMC |
http://dx.doi.org/10.3390/foods11182839 | DOI Listing |
Adv Mater
March 2024
National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology Department of Oral Surgery Shanghai Ninth People's Hospital College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
Guided bone regeneration gathers significant interest in the realm of bone tissue engineering; however, the interplay between membrane thickness and permeability continues to pose a challenge that can be addressed by the water-collecting mechanism of spider silk, where water droplets efficiently move from smooth filaments to rough conical nodules. Inspired by the natural design of spider silk, an innovative silk fibroin membrane is developed featuring directional fluid transportation via harmoniously integrating a smooth, dense layer with a rough, loose layer; conical microchannels are engineered in the smooth and compact layer. Consequently, double-layered membranes with cone-shaped microporous passageways (CSMP-DSF membrane) are designed for in situ bone repair.
View Article and Find Full Text PDFAdv Healthc Mater
March 2024
Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
Wound management remains a critical healthcare issue due to the rising incidence of chronic diseases leading to persistent wounds. Traditional dressings have their limitations, such as potential for further damage during changing and suboptimal healing conditions. Recently, hydrogel-based dressings have gained attention due to their biocompatibility, biodegradability, and ability to fill wounds.
View Article and Find Full Text PDFFoods
September 2022
Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100194, China.
Plant protein adhesive has received considerable attention because of their renewable raw material and no harmful substances such as formaldehyde. However, for the plant protein adhesive used in the field of plywood, low cost, strong water resistance, and high bonding strength were the necessary conditions for practical application. In this work, a double-network structure including hydrogen bonds and covalent bonds was built in hot-pressed peanut meal (HPM) protein (HPMP) adhesive, soybean meal (SBM) protein (SBMP) adhesive and cottonseed meal (CSM) protein (CSMP) adhesives.
View Article and Find Full Text PDFWater Res
April 2013
State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, China.
This study focused on the effect of predated sludge recycle on the fouling potential of soluble microbial products (SMP) in the MBR coupled with Static Sequencing Batch Worm Reactor (SSBWR-MBR). The S-SMP (SMP in SSBWR-MBR) filtration showed slower diminishing rate of flux than C-SMP (SMP in Control-MBR) filtration, and the standard blocking model showed the most excellent fit (R² = 0.9999) for both C-SMP and S-SMP filtration, confirming that hydrophobic/hydrophilic attractive force was supposed to play a major role in SMP filtration.
View Article and Find Full Text PDFActa Pharmacol Sin
November 2002
Department of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
Aim: To formulate and characterize insulin-loaded adhesive microspheres (MP) and evaluate drug effects of MP with various sizes, 120, 350, and 1000 nm in diameter, in the alloxan-induced diabetic rats.
Methods: Insulin-loaded MP were formulated by an ionotropic gelation procedure. Particle size distributions were determined by photon correlation spectroscopy and optical microscopy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!