A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of Acidulants on the Rheological Properties of Gelatin Extracted from the Skin of Tilapia (). | LitMetric

Effects of Acidulants on the Rheological Properties of Gelatin Extracted from the Skin of Tilapia ().

Foods

College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, Lin Gang New City, Shanghai 201306, China.

Published: September 2022

This study aimed to evaluate the effects of lactic acid (LA), citric acid (CA), and malic acid (MA) varying in concentration (0.5−2.0% w/w) on the rheological properties of fish gelatin (1.5−6.67% w/w) obtained from the skin of tilapia (Oreochromis mossambicus). The addition of LA, CA, or MA in gelatin dispersions significantly (p < 0.05) weakened their gel strengths, leading to a 14.3−62.2 reduction in gel strength. The gel strength, elastic (G′), and viscous (G″) moduli, as well as the gelling (TG) and melting (TM) temperatures of gelatin dispersions decreased with an increased level of acid added, implying the weakening effects of these acids on junction zones of the gelatin network in aqueous media. The addition of LA had less effect on these rheological properties of gelatin dispersions as compared to that of MA and CA, which were consistent with their effects on the pH of gelatin dispersions. Moreover, the reductions of TG and TM for gelatin dispersions with a higher gelatin concentration (e.g., 6.67% gelatin with 0.5% LA, TG dropped 0.4 °C) due to the addition of LA, CA, or MA were less pronounced compared to those with a lower gelatin content (e.g., 2% gelatin with 0.5% LA, TG dropped 7.1 °C), likely attributing to the stronger buffering effect of the high gelatin dispersion and less percentage reduction in the junction zones in the dispersion due to the addition of an acid. Incorporation of the effects of acids on the linear relationships (R2 = 0.9959−0.9999) between the square of gelatin concentrations and G′ or G″ could make it possible to develop a model to predict G′, G″, phase transition temperatures of gelatin dispersions containing different amounts of gelatin and acid (within the tested range) in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9497695PMC
http://dx.doi.org/10.3390/foods11182812DOI Listing

Publication Analysis

Top Keywords

gelatin dispersions
24
gelatin
16
rheological properties
12
properties gelatin
8
skin tilapia
8
gel strength
8
temperatures gelatin
8
effects acids
8
junction zones
8
gelatin 05%
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!