A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An Artificial Intelligence Approach to Guiding the Management of Heart Failure Patients Using Predictive Models: A Systematic Review. | LitMetric

Heart failure (HF) is one of the leading causes of mortality and hospitalization worldwide. The accurate prediction of mortality and readmission risk provides crucial information for guiding decision making. Unfortunately, traditional predictive models reached modest accuracy in HF populations. We therefore aimed to present predictive models based on machine learning (ML) techniques in HF patients that were externally validated. We searched four databases and the reference lists of the included papers to identify studies in which HF patient data were used to create a predictive model. Literature screening was conducted in Academic Search Ultimate, ERIC, Health Source Nursing/Academic Edition and MEDLINE. The protocol of the current systematic review was registered in the PROSPERO database with the registration number CRD42022344855. We considered all types of outcomes: mortality, rehospitalization, response to treatment and medication adherence. The area under the receiver operating characteristic curve (AUC) was used as the comparator parameter. The literature search yielded 1649 studies, of which 9 were included in the final analysis. The AUCs for the machine learning models ranged from 0.6494 to 0.913 in independent datasets, whereas the AUCs for statistical predictive scores ranged from 0.622 to 0.806. Our study showed an increasing number of ML predictive models concerning HF populations, although external validation remains infrequent. However, our findings revealed that ML approaches can outperform conventional risk scores and may play important role in HF management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9496386PMC
http://dx.doi.org/10.3390/biomedicines10092188DOI Listing

Publication Analysis

Top Keywords

predictive models
16
heart failure
8
systematic review
8
machine learning
8
predictive
6
models
5
artificial intelligence
4
intelligence approach
4
approach guiding
4
guiding management
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!