Background: Immune evasion in glioblastoma (GBM) shields cancer cells from cytotoxic immune response.
Methods: We investigated CpG methylation in promoters, genes, and pathways in 22 pairs of formalin-fixed paraffin-embedded sequential (FFPE) GBM using restricted resolution bisulfite sequencing (RRBS) and bioinformatic analyses.
Results: Gene ontology revealed hypermethylation in elements of the innate and adaptive immune system when recurrent GBM samples (GBM) were compared to control (CG) and primary GBM samples (GBM). Higher methylation levels of the IL-7 signaling pathway and response to IL-7 were found in GBM suggesting a progressive blockade of the IL-7 driven T cell response in sequential GBM. Analyses of the Cancer Genome Atlas array-based data confirmed hypermethylation of the IL-7 pathway in recurrent compared with primary GBM. We also quantified DNA CpG methylation in promoter and gene regions of the IL-7 ligand and IL-7 α-receptor subunit in individual samples of a large RRBS-based sequential cohort of GBM in a Viennese database and found significantly higher methylation levels in the IL-7 receptor α-subunit in GBM compared with GBM.
Conclusions: This study revealed the progressive suppression of the IL-7 receptor-mediated pathway as a means of immune evasion by GBM and thereby highlighted it as a new treatment target.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9496096 | PMC |
http://dx.doi.org/10.3390/biomedicines10092174 | DOI Listing |
J Exp Clin Cancer Res
January 2025
School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China.
Background: Glioblastoma multiforme (GBM) exhibits a cellular hierarchy with a subpopulation of stem-like cells known as glioblastoma stem cells (GSCs) that drive tumor growth and contribute to treatment resistance. NAD(H) emerges as a crucial factor influencing GSC maintenance through its involvement in diverse biological processes, including mitochondrial fitness and DNA damage repair. However, how GSCs leverage metabolic adaptation to obtain survival advantage remains elusive.
View Article and Find Full Text PDFJ Neurooncol
January 2025
Department of Neurosurgery, Johns Hopkins University School of Medicine, 1800 Orleans St, Baltimore, MD, 21287, USA.
Purpose: Social determinants of health including neighborhood socioeconomic status, have been established to play a profound role in overall access to care and outcomes in numerous specialized disease entities. To provide glioblastoma multiforme (GBM) patients with high-quality care, it is crucial to identify predictors of hospital length of stay (LOS), discharge disposition, and access to postoperative adjuvant chemoradiation. In this study, we incorporate a novel neighborhood socioeconomic status index (NSES) and develop three predictive algorithms for assessing post-operative outcomes in GBM patients, offering a tool for preoperative risk stratification of GBM patients.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Stereotactic and Functional Neurosurgery, University Hospital of Bonn, 53127, Bonn, Germany.
Despite the favorable effects of immunotherapies in multiple types of cancers, its complete success in CNS malignancies remains challenging. Recently, a successful clinical trial of cytokine-induced killer (CIK) cell immunotherapy in patients with glioblastoma (GBM) has opened a new avenue for adoptive cellular immunotherapies in CNS malignancies. Prompt from these findings, herein, we investigated whether dendritic cells (DC) in combination with cytokine-induced killer cells (DC-CIK) could also provide an alternative and more effective way to improve the efficacy of GBM treatment.
View Article and Find Full Text PDFCell Rep
January 2025
The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA. Electronic address:
The sub-ventricular zone (SVZ) is the most well-characterized neurogenic area in the mammalian brain. We previously showed that in 65% of patients with glioblastoma (GBM), the SVZ is a reservoir of cancer stem-like cells that contribute to treatment resistance and the emergence of recurrence. Here, we build a single-nucleus RNA-sequencing-based microenvironment landscape of the tumor mass and the SVZ of 15 patients and two histologically normal SVZ samples as controls.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Biological Science and Technology, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.
The blood-brain barrier (BBB) remains a major obstacle for effective delivery of therapeutics to treat central nervous system (CNS) disorders. Although transferrin receptor (TfR)-mediated transcytosis is widely employed for brain drug delivery, the inefficient release of therapeutic payload hinders their efficacy from crossing the BBB. Here, we developed a pH-responsive anti-polyethylene glycol (PEG) × anti-TfR bispecific antibody (pH-PEG engager) that can complex with PEGylated nanomedicine at physiological pH to trigger TfR-mediated transcytosis in the brain microvascular endothelial cells, while rapidly dissociating from PEGylated nanomedicine at acidic endosomes for efficient release of PEGylated nanomedicine to cross the BBB.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!