Objective: To identify circulating miRNAs associated with ovarian endometriosis (OMA), and to analyze candidate genes targeted by these miRNAs. Methods: Putative regulating miRNAs were identified through an original bioinformatics approach. We first queried the miRWalk 2.0 database to collect putative miRNA targets. Then, we matched it to a transcriptomic dataset of OMA. Moving from gene expression in the tissue to possible alterations in the patient plasma, a selection of these miRNAs was quantified by qRT-PCR in plasma samples from 93 patients with isolated OMA and 95 patients surgically checked as free from endometriosis. Then, we characterized the genes regulated by more than one miRNA and validated them by immunohistochemistry and transfection experiments on endometrial cell primary cultures obtained from endometrial biopsies of 10 women with and without endometriosis with miRNA mimics. Stromal and epithelial cells were isolated and cultured separately and gene expression levels were measured by RT-qPCR. Results: Eight miRNAs were identified by bioinformatics analysis. Two of them were overexpressed in plasma from OMA patients: let-7b-5p and miR-92a-3p (p < 0.005). Three miRNAs, let-7b and miR-92a-3p, and miR-93-5p potentially targeted KIAA1324, an estrogen-responsive gene and one of the most downregulated genes in OMA. Transfection experiments with mimics of these two miRNAs showed a strong decrease in KIAA1324 expression, up to 40%. Immunohistochemistry revealed a moderate-to-intense staining for KIAA1324 in the eutopic endometrium and a faint-to-moderate staining in the ectopic endometrium for half of the samples, which is concordant with the transcriptomic data. Discussion and Conclusion: Our results suggested that KIAA1324 might be involved in endometriosis through the downregulating action of two circulating miRNAs. As these miRNAs were found to be overexpressed, their quantification in plasma could provide a tool for an early diagnosis of endometriosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9495942 | PMC |
http://dx.doi.org/10.3390/biomedicines10092065 | DOI Listing |
Tissue Eng Part A
January 2025
Orthopaedic and Bioengineering Research Laboratory, Colorado State University, Fort Collins, Colorado, USA.
The high failure rate of surgical repair for tendinopathies has spurred interest in adjunct therapies, including exosomes (EVs). Mesenchymal stromal cell (MSC)-derived EVs (MSCdEVs) have been of particular interest as they improve several metrics of tendon healing in animal models. However, research has shown that EVs derived from tissue-native cells, such as tenocytes, are functionally distinct and may better direct tendon healing.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-Cho, Kawaramachi Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan.
Duchenne/Becker muscular dystrophy (DMD/BMD) manifests progressive muscular dystrophy and non-progressive central nervous disorder. The neural disorder is possibly caused by abnormalities in the developmental period; however, basic research to understand the mechanisms remains underdeveloped. The responsible gene, Dmd (dystrophin), generates multiple products derived from several gene promoters.
View Article and Find Full Text PDFBackground: Gastric cancer (GC) has a poor prognosis, considerable cellular heterogeneity, and ranks fifth among malignant tumours. Understanding the tumour microenvironment (TME) and intra-tumor heterogeneity (ITH) may lead to the development of novel GC treatments.
Methods: The single-cell RNA sequencing (scRNA-seq) dataset was obtained from the Gene Expression Omnibus (GEO) database, where diverse immune cells were isolated and re-annotated based on cell markers established in the original study to ascertain their individual characteristics.
Neuromolecular Med
January 2025
Department of Neurology, Second Affiliated Hospital of Army Medical University (Xinqiao Hospital), Chongqing, China.
Alzheimer's disease (AD) is a prototypical neurodegenerative disorder, predominantly affecting individuals in the presenile and elderly populations, with an etiology that remains elusive. This investigation aimed to elucidate the alterations in anoikis-related genes (ARGs) in the AD brain, thereby expanding the repertoire of biomarkers for the disease. Using publically available gene expression data for the hippocampus from both healthy and AD subjects, differentially expressed genes (DEGs) were identified.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Background: The traditional use of Moringa oleifera (MO), an essential food source in Africa and Asia, to cure various diseases dates back thousands of years. This study examines the aqueous and ethanolic leaf extracts of MO's in vitro anti-leukemia capabilities.
Methods: After preparing aqueous and ethanolic MO leaf extracts, cells were treated with various concentrations for 48 h.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!