Functional Characterization and Phenotyping of Protoplasts on a Microfluidics-Based Flow Cytometry.

Biosensors (Basel)

School of Environmental Science and Engineering, Tianjin University, Weijin Rd. 92, Tianjin 300072, China.

Published: August 2022

A better understanding of the phenotypic heterogeneity of protoplasts requires a comprehensive analysis of the morphological and metabolic characteristics of many individual cells. In this study, we developed a microfluidic flow cytometry with fluorescence sensor for functional characterization and phenotyping of protoplasts to allow an unbiased assessment of the influence of environmental factors at the single cell level. First, based on the measurement of intracellular homeostasis of reactive oxygen species (ROS) with a DCFH-DA dye, the effects of various external stress factors such as HO, temperature, ultraviolet (UV) light, and cadmium ions on intracellular ROS accumulation in Arabidopsis mesophyll protoplasts were quantitatively investigated. Second, a faster and stronger oxidative burst was observed in Petunia protoplasts isolated from white petals than in those isolated from purple petals, demonstrating the photoprotective role of anthocyanins. Third, using mutants with different endogenous auxin, we demonstrated the beneficial effect of auxin during the process of primary cell wall regeneration. Moreover, UV-B irradiation has a similar accelerating effect by increasing the intracellular auxin level, as shown by double fluorescence channels. In summary, our work has revealed previously underappreciated phenotypic variability within a protoplast population and demonstrated the advantages of a microfluidic flow cytometry for assessing the in vivo dynamics of plant metabolic and physiological indices at the single-cell level.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9496511PMC
http://dx.doi.org/10.3390/bios12090688DOI Listing

Publication Analysis

Top Keywords

flow cytometry
12
functional characterization
8
characterization phenotyping
8
phenotyping protoplasts
8
microfluidic flow
8
protoplasts
5
protoplasts microfluidics-based
4
microfluidics-based flow
4
cytometry better
4
better understanding
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!