High spinal cord injuries (SCI) induce the deafferentation of phrenic motoneurons, leading to permanent diaphragm paralysis. This involves secondary injury associated with pathologic and inflammatory processes at the site of injury, and at the level of phrenic motoneurons. In the present study, we evaluated the antioxidant response in phrenic motoneurons involving the AMPK-Nrf2 signaling pathway following C2 spinal cord lateral hemi-section in rats. We showed that there is an abrupt reduction in the expression of phosphorylated AMPK and Nrf2 at one hour post-injury in phrenic motoneurons. A rebound is then observed at one day post-injury, reflecting a return to homeostasis condition. In the total spinal cord around phrenic motoneurons, the increase in phosphorylated AMPK and Nrf2 occurred at three days post-injury, showing the differential antioxidant response between phrenic motoneurons and other cell types. Taken together, our results display the implication of the AMPK-Nrf2 signaling pathway in phrenic motoneurons' response to oxidative stress following high SCI. Harnessing this AMPK-Nrf2 signaling pathway could improve the antioxidant response and help in spinal rewiring to these deafferented phrenic motoneurons to improve diaphragm activity in patients suffering high SCI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9495920PMC
http://dx.doi.org/10.3390/antiox11091665DOI Listing

Publication Analysis

Top Keywords

phrenic motoneurons
32
ampk-nrf2 signaling
16
signaling pathway
16
spinal cord
16
antioxidant response
12
phrenic
9
pathway phrenic
8
motoneurons
8
response phrenic
8
phosphorylated ampk
8

Similar Publications

The nucleus tractus solitarius (NTS) contains neurons that relay sensory swallowing commands information from the oropharyngeal cavity and swallowing premotor neurons of the dorsal swallowing group (DSG). However, the spatio-temporal dynamics of the interplay between the sensory relay and the DSG is not well understood. Here, we employed fluorescence imaging after microinjection of the calcium indicator into the NTS in an arterially perfused brainstem preparation of rat (n = 8) to investigate neuronal population activity in the NTS in response to superior laryngeal nerve (SLN) stimulation.

View Article and Find Full Text PDF

The opioid epidemic is a pervasive health issue and continues to have a drastic impact on the United States. This is primarily because opioids cause respiratory suppression and the leading cause of death in opioid overdose is respiratory failure (, opioid-induced respiratory depression, OIRD). Opioid administration can affect the frequency and magnitude of inspiratory motor drive by activating μ-opioid receptors that are located throughout the respiratory control network in the brainstem.

View Article and Find Full Text PDF

Introduction: Intrapleural injections of cholera toxin B conjugated to saporin (CTB-SAP) result in selective respiratory (, phrenic) motor neuron death and mimics aspects of motor neuron disease [(, amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA)], such as breathing deficits. This rodent model allows us to study the impact motor neuron death has on the output of surviving phrenic motor neurons as well as the compensatory mechanisms that are recruited. Microglial density in the phrenic motor nucleus as well as cervical gene expression of markers associated with inflammation (.

View Article and Find Full Text PDF

Cervical spinal cord injury usually leads to cardiorespiratory dysfunction due to interruptions of the supraspinal pathways innervating the phrenic motoneurons and thoracic sympathetic preganglionic neurons. Although clinical guidelines recommend maintaining the mean arterial pressure within 85-90 mmHg during the first week of injury, there is no pre-clinical evidence from animal models to prove the therapeutic efficacy of hemodynamic management. Accordingly, the present study was designed to investigate the therapeutic efficacy of hemodynamic management in rats with cervical spinal cord contusion.

View Article and Find Full Text PDF
Article Synopsis
  • High spinal cord injuries (SCIs) can cause diaphragm paralysis and breathing issues, largely due to chronic neuroinflammation that hinders recovery.
  • This study tested the impact of a glucose metabolism inhibitor, 2-deoxy-D-glucose (2-DG), on respiratory function and the production of neuroinflammatory markers in injured rats.
  • The results showed no significant improvement in diaphragm function or inflammation markers in the injured rats, while the treatment worsened conditions in healthy rats by increasing inflammation and ventilation.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!