Predicting patient response to treatment and the onset of chemoresistance are still major challenges in oncology. Chemoresistance is deeply influenced by the complex cellular interactions occurring within the tumor microenvironment (TME), including metabolic crosstalk. We have previously shown that ex vivo tumor tissue cultures derived from ovarian carcinoma (OvC) resections retain the TME components for at least four weeks of culture and implemented assays for assessment of drug response. Here, we explored ex vivo patient-derived tumor tissue cultures to uncover metabolic signatures of chemosensitivity and/or resistance. Tissue cultures derived from nine OvC cases were challenged with carboplatin and paclitaxel, the standard-of-care chemotherapeutics, and the metabolic footprints were characterized by LC-MS. Partial least-squares discriminant analysis (PLS-DA) revealed metabolic signatures that discriminated high-responder from low-responder tissue cultures to ex vivo drug exposure. As a proof-of-concept, a set of potential metabolic biomarkers of drug response was identified based on the receiver operating characteristics (ROC) curve, comprising amino acids, fatty acids, pyrimidine, glutathione, and TCA cycle pathways. Overall, this work establishes an analytical and computational platform to explore metabolic features of the TME associated with response to treatment, which can leverage the discovery of biomarkers of drug response and resistance in OvC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9496731PMC
http://dx.doi.org/10.3390/cancers14184460DOI Listing

Publication Analysis

Top Keywords

tissue cultures
20
metabolic signatures
12
tumor tissue
12
drug response
12
vivo tumor
8
response treatment
8
cultures derived
8
biomarkers drug
8
metabolic
6
tissue
5

Similar Publications

To clarify the cause of graded distribution of sucrose in apple fruit flesh, a quarter cut of young apple fruit was cultured for 72 h on agar-solidified MS medium supplemented with 0.5 M [1-C]sorbitol, with the longitudinal or horizontal cut face being attached with the medium, and distribution of C-labelled sucrose in a specimen obtained by slicing the fruit along with the cut face was visualized utilizing MALDI-TOF MSI. Heat map images on the distribution of the peaks of sorbitol containing C-atom indicated that external [1-C]sorbitol had penetrated evenly into the tissue.

View Article and Find Full Text PDF

The gastrointestinal tract is a prominent portal of entry for HIV-1 during sexual or perinatal transmission, as well as a major site of HIV-1 persistence and replication. Elucidation of underlying mechanisms of intestinal HIV-1 infection are thus needed for the advancement of HIV-1 curative therapies. Here, we present a human 2D intestinal immuno-organoid system to model HIV-1 disease that recapitulates tissue compartmentalization and epithelial-immune cellular interactions.

View Article and Find Full Text PDF

Objective: Staphylococcus aureus (SA), including methicillin-resistant strains (MRSAs), is a major cause of skin and soft tissue infections (SSTIs) in military populations. This study investigated SSTI incidence and SA carriage in a military training site over 16 weeks using a prospective observational cohort design.

Methods: Two training cohorts provided pre- and post-training self-collected swabs for bacterial carriage, and environmental swabs from accommodations, personal items, and training facilities.

View Article and Find Full Text PDF

High-grade serous ovarian cancer (HGSOC) remains the most lethal gynecological malignancy, and there is still an unmet medical need to deepen basic research on its origins and mechanisms of progression. Patient-derived organoids of high-grade serous ovarian cancer (HGSOC-PDO) are a powerful model to study the complexity of ovarian cancer as they maintain, in vitro, the mutational profile and cellular architecture of the cancer tissue. Genetic modifications by lentiviral transduction allow novel insights into signaling pathways and the potential identification of biomarkers regarding the evolution of drug resistance.

View Article and Find Full Text PDF

Background: Insulin resistance (IR) is central to the progression of non-alcoholic fatty liver disease (MAFLD). While aerobic exercise reduces hepatic fat and enhances insulin sensitivity, the specific mechanisms-particularly those involving exosomal pathways-are not fully elucidated.

Method: Exosomes were isolated from 15 MAFLD patients' plasma following the final session of a 12-week aerobic exercise intervention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!