The mapping of pastures can serve to increase productivity and reduce deforestation, especially in Amazon Biome regions. Therefore, in this study, we aimed to explore precision agriculture technologies for assessing the spatial variations of soil pH and biomass indicators (i.e., Dry Matter, DM; and Green Matter, GM). An experiment was conducted in an area cultivated with (Jacq.) cv. Mombaça in a rotational grazing system for dairy buffaloes in the eastern Amazon. Biomass and soil samples were collected in a 10 m × 10 m grid, with a total of 196 georeferenced points. The data were analyzed by semivariogram and then mapped by Kriging interpolation. In addition, a variability analysis was performed, applying both the Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) derived from satellite remote sensing data. The Kriging mapping between DM and pH at 0.30 m depth demonstrated the best correlation. The vegetative index mapping showed that the NDVI presented a better performance in pastures with DM production above 5.42 ton/ha. In contrast, DM and GM showed low correlations with the NDWI. The possibility of applying a variable rate within the paddocks was evidenced through geostatistical mapping of soil pH. With this study, we contribute to understanding the necessary premises for utilizing remote sensing data for pasture variable analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9495005PMC
http://dx.doi.org/10.3390/ani12182374DOI Listing

Publication Analysis

Top Keywords

remote sensing
12
mapping soil
8
amazon biome
8
normalized difference
8
sensing data
8
mapping
5
soil pasture
4
pasture attributes
4
attributes buffalo
4
buffalo management
4

Similar Publications

Seasonal monitoring of forage C:N:ADF ratio in natural rangeland using remote sensing data.

Environ Monit Assess

January 2025

Department of Plant and Soil Sciences, University of Pretoria, Hatfield, 0001, Pretoria, South Africa.

In recent decades, natural rangelands have emerged as vital sources of livelihood and ecological services, particularly in Southern Africa, supporting communities in developing regions. However, the escalating global demand for food, driven by a growing human population, has led to the extensive expansion of cultivated areas, resulting in continuous nutrient leaching in rangelands. To ensure the long-term viability of these ecosystems, there is a need to develop effective approaches for managing and monitoring the seasonality of forage quality.

View Article and Find Full Text PDF

Urban overheating significantly affects thermal comfort and livability, making it essential to understand the relationship between urban form and land surface temperature (LST). While the horizontal dimensions of urban form have been widely studied, the vertical structures and their impact on LST remain underexplored. This study investigates the influence of three-dimensional urban form characteristics on LST, using ECOSTRESS sensor data and four machine learning models.

View Article and Find Full Text PDF

Groundwater contamination with fluoride is a considerable public health concern that affects millions of people worldwide. The rapid growth of urbanization has led to increase in groundwater contamination. The health risk assessment focuses on both acute and chronic health consequences as it investigates the extent and effects of fluoride exposure through contaminated groundwater.

View Article and Find Full Text PDF

Introduction: In the context of climate variability, rapid and accurate estimation of winter wheat yield is essential for agricultural policymaking and food security. With advancements in remote sensing technology and deep learning, methods utilizing remotely sensed data are increasingly being employed for large-scale crop growth monitoring and yield estimation.

Methods: Solar-induced chlorophyll fluorescence (SIF) is a new remote sensing metric that is closely linked to crop photosynthesis and has been applied to crop growth and drought monitoring.

View Article and Find Full Text PDF

The semi-automatic and automatic extraction of land features such as buildings, trees, and roads using aerial laser scan data is crucial in land use change studies and urban management. This research introduces the "BTR" extractor, a novel software package designed to enhance classification accuracy of phenomena identified in the super points obtained from aerial laser scanners. Our method focuses on:-Comparing classification methods using airborne laser scanning data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!