The experiment was undertaken to assess whether the continuation or change of the parents' diet affects the previously programmed bone metabolism of the male offspring during its growth and development. A total of 16 male and 32 female Wistar rats were divided into groups and fed a standard (diet S) or high-energy (diet F). After the induction of obesity, the rats from groups S and F, as the parent generation, were used to obtain male offspring, which were kept with their mothers until the weaning day (21 days of age). In our earlier study, we documented the programming effects of the diet used in parents on the skeletal system of offspring measured on the weaning day. Weaned male offspring constitute one control group-parents and offspring fed the S diet. There were three experimental groups, where: parents received diet S and offspring were fed with the F diet; parents were treated with the diet F, while offspring received the S diet; and parents and offspring were fed with the diet F. The analyses were performed at 49 and 90 days of life. After sacrifice, cleaned-off soft tissue femora were assessed using peripheral quantitative computed tomography (pQCT), dual X-ray absorptiometry (DXA), and a three-point bending test. We observed that changing and continuation of nutrition, applied previously in parents, significantly influenced the metabolism of the bone tissue in male offspring, and the osteotropic effects differed, depending on the character of the nutrition modification and age. Additionally, an important conclusion of our study, regarding the previous, is that nutrition modification, affecting the metabolism of bone tissue, also depends on the sex.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9495023PMC
http://dx.doi.org/10.3390/ani12182314DOI Listing

Publication Analysis

Top Keywords

male offspring
16
diet parents
12
offspring fed
12
fed diet
12
diet
11
offspring
9
growth development
8
weaning day
8
received diet
8
diet offspring
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!