Bioactive Molecules: Structures, Functions, and Potential Uses for Cancer Prevention and Targeted Therapies.

Biomolecules

Departments of Oncology, Pharmacology and Pathology School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201-2013, USA.

Published: September 2022

Cancer continues to be an increasingly pervasive and destructive disease worldwide [...].

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9496177PMC
http://dx.doi.org/10.3390/biom12091221DOI Listing

Publication Analysis

Top Keywords

bioactive molecules
4
molecules structures
4
structures functions
4
functions potential
4
potential cancer
4
cancer prevention
4
prevention targeted
4
targeted therapies
4
therapies cancer
4
cancer continues
4

Similar Publications

The polyketide specialized metabolites of bacteria are attractive targets for generating analogues, with the goal of improving their pharmaceutical properties. Here, we aimed to produce C-26 derivatives of the giant anti-cancer stambomycin macrolides using a mutasynthesis approach, as this position has been shown previously to directly impact bioactivity. For this, we leveraged the intrinsically broad specificity of the acyl transferase domain (AT) of the modular polyketide synthase (PKS), which is responsible for the alkyl branching functionality at this position.

View Article and Find Full Text PDF

Approximately 40-50% of municipal solid waste is organic and causing biogenic malodor and infections, due to inefficient treatment methods. Biorefinery-based bioremediation and valorization is in vogue against these conventional strategies since it combines unit operations for better efficiency and productivity. Deriving inspiration, the proposed strategy puts together a unique and compatible combination of processes.

View Article and Find Full Text PDF

Inspired by the properties of natural chitin, the present work provides the first solid foundation for growing conformal ultrathin antibacterial films of organic chitin through a solvent-free molecular layer deposition (MLD) process. This work establishes the initial groundwork for growing biomimetic hybrid cuticles by combining sugar-type molecules with vapor-phase metal-organic precursors, which we term metallochitins or, more generally, metallosaccharides. The MLD process, featuring mild temperatures and solvent-free conditions, provides exceptional conformality and thickness precision, ensuring highly conformal coatings on diverse high aspect ratio substrates.

View Article and Find Full Text PDF

Engineered Strategies to Interfere with Macrophage Fate in Myocardial Infarction.

ACS Biomater Sci Eng

January 2025

Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China.

Myocardial infarction (MI), a severe cardiovascular condition, is typically triggered by coronary artery disease, resulting in ischemic damage and the subsequent necrosis of the myocardium. Macrophages, known for their remarkable plasticity, are capable of exhibiting a range of phenotypes and functions as they react to diverse stimuli within their local microenvironment. In recent years, there has been an increasing number of studies on the regulation of macrophage behavior based on tissue engineering strategies, and its regulatory mechanisms deserve further investigation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!