Evaluation of Rhesus Macaque Models for Cerebral Palsy.

Brain Sci

School of Life Sciences, Hefei Normal University, No. 1688, Lianhua Road, Hefei 230601, China.

Published: September 2022

Animal models play a central role in all areas of biomedical research. The similarities in anatomical structure and physiological characteristics shared by non-human primates (NHPs) and humans make NHPs ideal models with which to study human disorders, such as cerebral palsy (CP). However, the methodologies for systematically evaluating NHP models of CP have rarely been assessed, despite the long history of using NHP models to understand CP. Such models should be evaluated using multidisciplinary approaches prior to being used to research the diagnosis and treatment of CP. In this study, we evaluated rhesus macaque CP models established by partial resection of the motor cortex and intrathecal injection of bilirubin. Abnormal posture, motor dysfunction, gross and fine motor behavior, and muscular tension were evaluated, and changes in the cerebral cortex and basal ganglia were observed using 9.4 T magnetic resonance imaging. The results clearly demonstrated the utility of the established evaluation methodology for assessing CP models. This model evaluation methodology may guide researchers through the model building process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9496883PMC
http://dx.doi.org/10.3390/brainsci12091243DOI Listing

Publication Analysis

Top Keywords

rhesus macaque
8
models
8
macaque models
8
cerebral palsy
8
nhp models
8
evaluation methodology
8
evaluation rhesus
4
models cerebral
4
palsy animal
4
animal models
4

Similar Publications

Many human diseases are the result of early developmental defects. As most paediatric diseases and disorders are rare, children are critically underrepresented in research. Functional genomics studies primarily rely on adult tissues and lack critical cell states in specific developmental windows.

View Article and Find Full Text PDF

Antiproliferative effect of hydroalcoholic brown propolis extract on tumor and non-tumor cells.

Braz J Biol

January 2025

Universidade Tecnológica Federal do Paraná - UTFPR, Departmeno de Química e Ciências Biológicas, Francisco Beltrão, PR, Brasil.

Studies show that propolis has antimicrobial, antifungal, antiviral, anti-inflammatory, antioxidant, antitumor, and immunomodulatory properties, and may protect against diseases such as diabetes, cardiovascular disease, and cancer. We aimed to extract compounds of brown propolis with hydroalcoholic solvents and evaluate their cytotoxic activity on tumor and non-tumor cells by MTT test. We tested the solute:solvent ratio (ethanol:water) and extraction time in a Shaker incubator (710 rpm) before conducting a central composite rotational design (CCRD) to optimize time and solvent mixture.

View Article and Find Full Text PDF

Cortical interneurons generated from ganglionic eminence via a long-distance journey of tangential migration display evident cellular and molecular differences across brain regions, which seeds the heterogeneous cortical circuitry in primates. However, whether such regional specifications in interneurons are intrinsically encoded or gained through interactions with the local milieu remains elusive. Here, we recruit 685,692 interneurons from cerebral cortex and subcortex including ganglionic eminence within the developing human and macaque species.

View Article and Find Full Text PDF

Estimating realized relatedness in free-ranging macaques by inferring identity-by-descent segments.

Proc Natl Acad Sci U S A

January 2025

Department of Primate Behavioral Ecology, Institute of Biology, Leipzig University, Leipzig 04103, Germany.

Biological relatedness is a key consideration in studies of behavior, population structure, and trait evolution. Except for parent-offspring dyads, pedigrees capture relatedness imperfectly. The number and length of identical-by-descent DNA segments (IBD) yield the most precise relatedness estimates.

View Article and Find Full Text PDF

Background: Non-human primates (NPHs), such as rhesus macaques, cynomolgus monkeys, and Assamese macaques, play a crucial role in biomedical research. However, baseline cytokine and electrolyte data for these three species, particularly data stratified by age and sex, are limited. Therefore, the aim of this study was to establish and analyze age- and sex-specific cytokine and electrolyte profiles in these three species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!