Algae are the naturally produced food for fish in any aquatic ecosystem and an indicator of a productive pond. However, excess abundance of harmful algae can have detrimental effects on fish health. In this study, the algal communities of 30 coastal homestead fish ponds were investigated to identify the diversity, assemblage and controlling environmental variables of harmful algae from a tropical coastal area. The findings showed that 81 of the 89 genera of identified algae were harmful, with the majority of them being in the classes of Cyanophyceae (50.81%), Chlorophyceae (23.75%), Bacillariophyceae (9.5%), and Euglenophyceae (8.47%). Microcystis spp. alone contributed 28.24% to the total abundance of harmful algae. Significant differences (p < 0.05) in algal abundance were found among the ponds with the highest abundance (470 ± 141.74 × 103 cells L−1) at pond (S25) near agricultural fields and the lowest abundance (109.33 ± 46.91 × 103 cells L−1) at pond (S14) which was lacking sufficient sunlight and nutrients. Diversity indices, e.g., dominance (D), evenness (J′), richness (d) and Shannon diversity index (H′) ranged from 0.17 to 0.44, 0.23 to 0.6, 0.35 to 2.23 and 0.7 to 1.79, respectively, indicating a moderate range of diversity and community stability. Community composition analysis showed the assemblage was dominated by Cyanophyceae, Chlorophyceae and Bacillariophyceae, whereas, multivariate cluster analyses (CA) identified 11 major clusters. To identify the factors controlling their distribution or community assemblages, eight environmental variables (temperature, pH, dissolved oxygen (DO), salinity, transparency, nitrates, phosphates and sulphate) were measured. ANOVA analysis showed that the variables significantly differed (p < 0.05) among the ponds, and canonical correspondence analysis (CCA) demonstrated that DO, nitrates, phosphates, sulphates, salinity and transparency have the most impact on the abundance of algal genera. In addition, analyses with Pearson’s correlation coefficient showed that the abundance of total algae, diversity and community were mainly governed by phosphates and sulphates. These results can be used to identify and control these toxic algal groups in the local aquaculture sector.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9495810 | PMC |
http://dx.doi.org/10.3390/biology11091335 | DOI Listing |
Plant Physiol Biochem
January 2025
College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China. Electronic address:
Microcystis aeruginosa, a harmful alga in cyanobacterial blooms, damages aquatic ecosystems. Species diversity may control the blooms by increasing ecosystem stability and resource utilization. The growth and photosynthetic systems of M.
View Article and Find Full Text PDFToxins (Basel)
January 2025
Scottish Association for Marine Science-UHI, Oban PA37 1QA, UK.
This study explored harmful algal bloom (HAB) risk as a function of exposure, hazard and vulnerability, using Scotland as a case study. Exposure was defined as the fish biomass estimated to be lost from a bloom event, based on the total recorded annual production. Hazard was estimated from literature-reported bloom events.
View Article and Find Full Text PDFDis Aquat Organ
January 2025
Department of Hydrobiology, Ichthyology and Biotechnology of Reproduction, West Pomeranian University of Technology in Szczecin, Kazimierza Królewicza 4, 71-550 Szczecin, Poland.
The 2022 Oder River disaster was one of the most significant harmful events in recent European river history, with an estimated 60% reduction in fish biomass in the lower section of the river. While the prevailing hypothesis attributes associated fish kills to toxins from golden algae Prymnesium parvum, our histopathological study on the gills of 2 common cyprinid fish species, namely vimba bream Vimba vimba (L.) and roach Rutilus rutilus (L.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China. Electronic address:
Harmful algal blooms are a critical eco-environmental issue with severe impacts on aquatic ecosystems and human health. Tannic acid (TA) has been suggested as an effective algal bloom control, but the molecular mechanisms of its interaction with algae cells and its effects on algal toxin release remain unclear. This study tracked toxin production and release in the toxigenic species Microcystis aeruginosa (M.
View Article and Find Full Text PDFAquat Toxicol
January 2025
Center for the Development of Functional Materials (CDMF), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235 13565-905, São Carlos, SP, Brazil.
The semiconductor copper tungstate (CuWO) may end up in aquatic ecosystems since it has the potential for water decontamination. The toxic effects of CuWO are totally unknown for eukaryotic organisms. In view of this, we aimed to evaluate the toxicity of CuWO particles (size of 161.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!