Positron emission tomography (PET) studies have shown involvement of the striatum when treating adult attention-deficit/hyperactivity disorder (ADHD) with methylphenidate (MPH). Results from resting-state functional magnetic resonance imaging (rs-fMRI) for the same issue were less unequivocal. Here, a new analytical framework was set up to investigate medication effects using seed-based rs-fMRI analysis to infer brain regions with alterations in intrinsic functional connectivity (IFC) corresponding with ADHD symptom reduction. In a within-subjects study design, 53 stimulant-naïve adult ADHD patients were investigated before and after 6 weeks of MPH treatment, using two major clinical symptom scales and rs-fMRI. The same data were acquired in a sample of 50 age- and sex-matched healthy controls at baseline. A consensual atlas provided seeds for five predefined major resting-state networks. In order to avoid biasing of medication effects due to putative treatment failure, the entire ADHD sample was first categorized into treatment Responders (N = 36) and Non-Responders (N = 17) using machine learning-based classification with the clinical scales as primary data. Imaging data revealed medication effects only in Responders. In that group, IFC of bilateral putamen changed significantly with medication and approached almost normal levels of IFC. Present results align well with results from previous PET studies, with seed-based rs-fMRI as an entirely different neuroimaging method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9495306PMC
http://dx.doi.org/10.3390/biology11091320DOI Listing

Publication Analysis

Top Keywords

medication effects
12
intrinsic functional
8
functional connectivity
8
adult adhd
8
treatment responders
8
responders non-responders
8
pet studies
8
seed-based rs-fmri
8
adhd
5
methylphenidate differentially
4

Similar Publications

Aerobic exercise prevents renal osteodystrophy via irisin-activated osteoblasts.

JCI Insight

January 2025

Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.

Renal osteodystrophy is commonly seen in patients with chronic kidney disease (CKD) due to disrupted mineral homeostasis. Given the impaired renal function in these patients, common anti-resorptive agents, including bisphosphonates, must be used with caution or even contraindicated. Therefore, an alternative therapy without renal burden to combat renal osteodystrophy is urgently needed.

View Article and Find Full Text PDF

Novel genetic insight for psoriasis: integrative genome-wide analyses in 863 080 individuals and proteome-wide Mendelian randomization.

Brief Bioinform

November 2024

Department of Dermatology, Daping Hospital, Army Medical University, No. 10, Changjiang Branch Road, Yuzhong District, Chongqing 400042, China.

Psoriasis affects a significant proportion of the worldwide population and causes an extremely heavy psychological and physical burden. The existing therapeutic schemes have many deficiencies such as limited efficacies and various side effects. Therefore, novel ways of treating psoriasis are urgently needed.

View Article and Find Full Text PDF

A model of care redesign within rheumatology: A mixed methods approach integrating nurse practitioners and physician assistants.

J Am Assoc Nurse Pract

January 2025

Division of Cardiology, Department of Medicine, Duke Health Integrated Practice, Duke University Health System, Durham, North Carolina.

Background: Increasing patient demand and clinician burnout in rheumatology practices have highlighted the need for more efficient models of care (MOC). Interprofessional collaboration is essential for improving patient outcomes and clinician satisfaction.

Local Problem: Our current MOC lacks standardization and formal integration of Nurse Practitioners (NPs) and Physician Assistants (PAs), resulting in reduced clinician satisfaction and limited patient access.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!