Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The reconstruction of ancient trophic networks is pivotal to our understanding of ecosystem function and change through time. However, inferring dietary relationships in enigmatic ecosystems dominated by organisms without modern analogues, such as the Carboniferous Mazon Creek fauna, has previously been considered challenging: preserved coprolites often do not retain sufficient morphology to identify the dietary composition. Here, we analysed = 3 Mazon Creek coprolites in concretions for dietary signals in preserved biomarkers, stable carbon isotope data, and macromolecular composition. Cholesteroids, metazoan markers of cholesterol, show an increased abundance in the sampled coprolites (86 to 99% of the total steranes) compared to the surrounding sediment, indicating an endogenous nature of preserved organics. Presence of unaltered 5α-cholestan-3β-ol and coprostanol underline the exceptional molecular preservation of the coprolites, and reveal a carnivorous diet for the coprolite producer. Statistical analyses of Raman spectra targeting coprolite carbonaceous remains support a metazoan affinity of the digested fossil remains, and suggest a high trophic level for the coprolite producer. These currently oldest, intact dietary stanols, combined with exquisitely preserved macromolecular biosignatures in Carboniferous fossils offer a novel source of trophic information. Molecular and biosignature preservation is facilitated by rapid sedimentary encapsulation of the coprolites within days to months after egestion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9495973 | PMC |
http://dx.doi.org/10.3390/biology11091289 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!