Background: Melanoma is a malignant tumor with a high mortality rate. Some microorganisms have been shown to activate the immune system and limit cancer progression. The objective of this study is to evaluate the anti-melanoma effect of Neospora caninum, a livestock pathogen with no pathogenic activity in humans.
Methods: Neospora caninum tachyzoites were inoculated into a C57BL/6 mouse melanoma model by intratumoral and distal subcutaneous injections. Tumor volumes were measured, and cell death areas were visualized by hematoxylin and eosin staining and quantified. Apoptosis in cell cultures and whole tumors was detected by propidium iodide (PI) and TUNEL staining, respectively. Cytokine and tumor-associated factor levels in tumors and spleens were detected by real-time quantitative polymerase chain reaction. Infiltration of macrophages and CD8 T cells in the tumor microenvironment (TME) were detected by immunohistochemistry with anti-CD68 and anti-CD8 antibodies, respectively. Finally, 16S rRNA sequencing of mice cecal contents was performed to evaluate the effect of N. caninum on gut microbial diversity.
Results: Intratumoral and distal subcutaneous injections of N. caninum resulted in significant inhibition of tumor growth (P < 0.001), and more than 50% of tumor cells were dead without signs of apoptosis. Neospora caninum treatment significantly increased the mRNA expression levels of IL-12, IFN-γ, IL-2, IL-10, TNF-α, and PD-L1 in the TME, and IL-12 and IFN-γ in the spleen of tumor-bearing mice (P < 0.05). An increase in the infiltration of CD8 T cells and macrophages in the TME was observed with these cytokine changes. Neospora caninum also restored the abundance of gut microbiota Lactobacillus, Lachnospiraceae, Adlercreutzia, and Prevotellaceae associated with tumor growth, but the changes were not significant.
Conclusion: Neospora caninum inhibits B16F10 melanoma by activating potent immune responses and directly destroying the cancer cells. The stable, non-toxic, and efficacious properties of N. caninum demonstrate the potential for its use as a cancer treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503190 | PMC |
http://dx.doi.org/10.1186/s13071-022-05456-8 | DOI Listing |
Int J Biometeorol
January 2025
Laboratorio de Zoología, Departamento de Biotecnológicas y Ambientales, Universidad Autónoma de Guadalajara, Av. Patria 1201, Zapopan, 45129, México.
In Mexico, Neospora caninum and Toxoplasma gondii are major causes of reproductive problems in sheep. Understanding the environmental factors that influence the spread of these parasites is crucial for developing effective control strategies. The objective of this study was to identify the environmental factors associated with N.
View Article and Find Full Text PDFRes Vet Sci
January 2025
Dpto. Sanidad Animal, Facultad de Veterinaria, Universidad de Murcia, Campus Universitario de Espinardo, 30100 Murcia, Spain.
Knowledge of pathogen epidemiological dynamics and habitat ecological features is essential for wildlife population and health monitoring and management. Toxoplasma gondii and Neospora caninum are two broadly distributed multi-host parasites that affect both wild and domestic animals and, in the case of T. gondii, cause zoonosis.
View Article and Find Full Text PDFVet Med Sci
January 2025
Medical Biology Research Center, Health Technology institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
Background: Neospora caninum (Apicomplexa, Sarcocystidae) is a protozoan parasite regarded as a major cause of reproductive failure in cattle. Swine are susceptible to N. caninum infection; however, the role of these animals in the circulation, maintenance, and transmission of N.
View Article and Find Full Text PDFActa Parasitol
January 2025
Department of Veterinary Medicine, Federal University of Paraná, Rua Dos Funcionários, 1540, Curitiba, Paraná, 80035-050, Brazil.
Purpose: The aim of the present study was to establish a SYBR Green-based real-time PCR assay for detection of the Nc5 segment from the Neospora caninum genome.
Methods: The oligonucleotides sequences targeting the Nc5 gene previously reported and designed in-house were validated. Two Primer sets were evaluated and tested in four different combinations.
BMC Res Notes
December 2024
Ethiopian Institute of Agricultural Research, National Agricultural Biotechnology Research Center, P.O. Box: 249, Holeta, Ethiopia.
Background: The reproductive problem is an animal health-related bottleneck that constrains livestock genetic improvement efforts in tropical countries such as Ethiopia. The infectious causes of reproductive disorders are one cause of decreased reproductive efficiency. This study aimed to determine the seroprevalence to Bovine Herpesvirus-1 (BHV1), Bovine Viral Diarrhea Virus (BVDV), Neospora caninum (N.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!