Background: Hemp (Cannabis sativa L.) is a producer of cannabinoids. These organic compounds are of increasing interest due to their potential applications in the medicinal field. Advances in analytical methods of identifying and quantifying these molecules are needed.

Method: This study describes a new method of cannabinoid separation from plant material using gas chromatography-mass spectrometry (GC-MS) as the analytical tool to detect low abundance cannabinoids that will likely have implications for future therapeutical treatments. A novel approach was adopted to separate trichomes from plant material to analyse cannabinoids of low abundance not observed in raw plant extract. Required plant sample used for analysis was greatly reduced compared to other methods. Derivatisation method was simplified and deconvolution software was utilised to recognise unknown cannabinoid compounds of low abundance.

Results: The method produces well-separated spectra and allows the detection of major and minor cannabinoids. Ten cannabinoids that had available standards could be identified and quantified and numerous unidentified cannabinoids or pathway intermediates based on GC-MS spectra similarities could be extracted and analysed simultaneously with this method.

Conclusions: This is a rapid novel extraction and analytical method from plant material that can identify major and minor cannabinoids using a simple technique. The method will be of use to future researchers seeking to study the multitude of cannabinoids whose values are currently not understood.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503267PMC
http://dx.doi.org/10.1186/s42238-022-00161-wDOI Listing

Publication Analysis

Top Keywords

plant material
12
cannabinoids
9
hemp cannabis
8
cannabis sativa
8
low abundance
8
major minor
8
minor cannabinoids
8
method
5
plant
5
semi-quantitative analysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!