Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Large and aberrant bone fractures require ossification and concomitant vascularization for proper healing. Evidence indicates that osteogenesis and vessel growth are coupled in bone fractures. Although the synergistic role of endothelial cells has been recognized, vascularizing large bone grafts remains a challenge and has apprehended the clinical translation of engineered bone constructs. Here, we describe a facile method to fabricate vascularized constructs using chitosan and gelatin-based microgels that promote osteogenesis of human mesenchymal stromal cells (MSC) while supporting endothelial sprouting and network formation. The microgels are enzymatically degradable and had a high hydration rate with a volume swelling ratio of ~ 493% and a polymer density of ~ 431 mg/cm which is comparable to that of native skeletal tissues. AFM indentation of the surface showed an average Young's modulus of 189 kPa, falling in a range that is conducive to both osteogenesis and vasculogenesis. The osteogenic microgel containing chitosan, gelatin, and hydroxyapatite, mimicking the bone matrix, supported robust attachment, proliferation, and differentiation of MSC. On the other hand, the vasculogenic microgels containing only gelatin, enriched endothelial phenotype and enabled vascular networks formation when embedded in 3D matrices. Combining the two types of microgels created a hybrid construct that sustained the functions of both osteogenic and vasculogenic microgels and enhanced one another. Using a murine model, we also show that the osteogenic microgels regenerate bone in a critical-sized defect with > 95% defect closure by week 12. These multifunctional microgels can be administered minimally invasively and can conformally fill large bone defects. This work lays the foundation to establish principles of designing multiphasic scaffolds with tissue-specific biophysical and biochemical properties for regenerating vascularized and interfacial tissues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9499928 | PMC |
http://dx.doi.org/10.1038/s41598-022-19968-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!