A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Injectable nanoporous microgels generate vascularized constructs and support bone regeneration in critical-sized defects. | LitMetric

Injectable nanoporous microgels generate vascularized constructs and support bone regeneration in critical-sized defects.

Sci Rep

Department of Biomedical Engineering, University of Kentucky, 760 Press Avenue, 138 Healthy Kentucky Research Building, Lexington, KY, 40536, USA.

Published: September 2022

Large and aberrant bone fractures require ossification and concomitant vascularization for proper healing. Evidence indicates that osteogenesis and vessel growth are coupled in bone fractures. Although the synergistic role of endothelial cells has been recognized, vascularizing large bone grafts remains a challenge and has apprehended the clinical translation of engineered bone constructs. Here, we describe a facile method to fabricate vascularized constructs using chitosan and gelatin-based microgels that promote osteogenesis of human mesenchymal stromal cells (MSC) while supporting endothelial sprouting and network formation. The microgels are enzymatically degradable and had a high hydration rate with a volume swelling ratio of ~ 493% and a polymer density of ~ 431 mg/cm which is comparable to that of native skeletal tissues. AFM indentation of the surface showed an average Young's modulus of 189 kPa, falling in a range that is conducive to both osteogenesis and vasculogenesis. The osteogenic microgel containing chitosan, gelatin, and hydroxyapatite, mimicking the bone matrix, supported robust attachment, proliferation, and differentiation of MSC. On the other hand, the vasculogenic microgels containing only gelatin, enriched endothelial phenotype and enabled vascular networks formation when embedded in 3D matrices. Combining the two types of microgels created a hybrid construct that sustained the functions of both osteogenic and vasculogenic microgels and enhanced one another. Using a murine model, we also show that the osteogenic microgels regenerate bone in a critical-sized defect with > 95% defect closure by week 12. These multifunctional microgels can be administered minimally invasively and can conformally fill large bone defects. This work lays the foundation to establish principles of designing multiphasic scaffolds with tissue-specific biophysical and biochemical properties for regenerating vascularized and interfacial tissues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9499928PMC
http://dx.doi.org/10.1038/s41598-022-19968-xDOI Listing

Publication Analysis

Top Keywords

microgels
8
vascularized constructs
8
bone
8
bone fractures
8
large bone
8
vasculogenic microgels
8
injectable nanoporous
4
nanoporous microgels
4
microgels generate
4
generate vascularized
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!