Current political focus on promoting circular economy in the European Union drives great interest in developing and using more biobased fertilizers (BBFs, most often waste or residue-derived). Many studies have been published on environmental emissions, including ammonia (NH) volatilization from manures, but there have only been a few such studies on BBFs. Ammonia volatilization from agriculture poses a risk to the environment and human health, causing pollution in natural ecosystems when deposited and formation of fine particulate matter (PM). Furthermore, NH volatilization results in removal of plant-available N from agricultural systems, constituting an economic loss for farmers. The aim of this laboratory study was to determine the potential NH volatilization from 39 different BBFs commercially available on the European market. In addition, this study aimed to investigate the effect of incorporation, application rate, soil type, and soil moisture content on potential NH volatilization in order to derive suggestions for the optimal field application conditions. Results showed a great variation between BBFs in potential NH volatilization, both in terms of their temporal pattern of volatilization and amount of NH volatilized. The potential NH volatilization varied from 0% of applied total N (olive oil compost) to 64% of applied total N (manure and crop digestate) during a 27- or 44-day incubation period. Characteristics of BBFs (pH, NH-N, NO-N, DM, C:N) and their interaction with time could explain 89% of the variation in accumulated potential NH volatilization. Incorporation of BBFs into an acidic sandy soil effectively reduced potential NH volatilization by 37%-96% compared to surface application of BBFs. Potential NH volatilization was not significantly affected by differences in application rate or soil moisture content, but varied between five different soils (with different clay and organic matter content), with the highest NH volatilization potential from the acidic sandy soil.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2022.116249 | DOI Listing |
Food Chem
January 2025
Laboratory of Viticulture, School of Agriculture, Faculty of Agriculture Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
A non-targeted analytical approach using gas chromatography-mass spectrometry (GC-MS) is proposed for the analysis of the free and bound volatile fractions of three emblematic indigenous Greek white winegrape varieties belonging to Vidiano, Malagousia, and Savvatiano and establish volatile varietal markers using multivariate chemometrics. A total of 89 free and 103 bound volatile compounds were identified, categorized into alcohols, aldehydes, esters, acids, terpenes, norisoprenoids, C6 compounds, phenols, and ketones. A robust Partial Least Squares Discriminant Analysis (PLS-DA) prediction model was developed and validated, and successfully classified the grape samples according to the variety with 100 % accuracy, demonstrating the potential of volatile profiling as a non-targeted fingerprinting approach for varietal discrimination.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
We investigated the impacts of personal care products (PCPs) on dermal exposure to semi-volatile organic compounds (SVOCs), including phthalates, organophosphate esters, polycyclic aromatic hydrocarbons (PAHs), ultraviolet filters, and p-phenylenediamines, through an experiment from volunteers, explored the impact mechanisms of PCP ingredients on dermal exposure, and predicted the PCP effects on SVOC concentrations in human serum using machine learning. After applying PCPs, namely lotion, baby oil, sunscreen, and blemish balm, the dermal adsorption of SVOCs increased significantly by 1.63 ± 0.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Anesthesiology, Hind Institute of Medical Sciences, Safedabad, Lucknow, U.P., 225001, India.
A volatile organic substance produced from jasmonic acid, methyl jasmonate (MJ/MeJA), is an important plant hormone involved in stress responses and plant defense. Apart from its role in plants, MJ has garnered significant attention because of its pharmacological effects and possible therapeutic use in human health. This thorough analysis looks into the many biological actions of MJ, such as its antioxidant, anti-inflammatory, and anti-cancer effects.
View Article and Find Full Text PDFSmall Methods
January 2025
Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
Molecular electronics exhibiting resistive-switching memory features hold great promise for the next generation of digital technology. In this work, electrosynthesis of ruthenium polypyridyl nanoscale oligomeric films is demonstrated on an indium tin oxide (ITO) electrode followed by an ITO top contact deposition yielding large-scale (junction area = 0.7 × 0.
View Article and Find Full Text PDFNanoscale Horiz
January 2025
London Centre for Nanotechnology, 19 Gordon St, London, WC1H 0AH, UK.
We demonstrate low energy, forming and compliance-free operation of a resistive memory obtained by the partial oxidation of a two-dimensional layered van-der-Waals semiconductor: hafnium disulfide (HfS). Semiconductor-oxide heterostructures are achieved by low temperature (<300 °C) thermal oxidation of HfS under dry conditions, carefully controlling process parameters. The resulting HfOS/HfS heterostructures are integrated between metal contacts, forming vertical crossbar devices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!