Allyl phenyl selenides as HO acceptors to develop ROS-responsive theranostic prodrugs.

Bioorg Chem

Department of Medicinal Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China; College of Pharmacy, University of Michigan, NCRC, 1600 Huron Pkwy, Ann Arbor, 48109, USA. Electronic address:

Published: December 2022

Reactive oxygen species (ROS)-responsive prodrugs have received significant attention due to their capacity to target tumors to relieve the side effects caused by chemotherapy. Herein, a series of novel HO-activated theranostic prodrugs (CPTSe1-CPTSe7) were developed containing allyl phenyl selenide moieties as HO acceptors. Compared with conventional boronate ester-based prodrug CPT-B, CPTSe1 was more stable in human plasma and showed a more complete release of camptothecin (CPT) in HO inducing experiment. The selectively activated fluorescence signals of CPTSe1 in tumor cells make it useful for real-time monitoring of CPT release and HO detection. Furthermore, excellent selectivity of CPTSe1 was achieved for tumor cells over normal cells. Our results provide a new platform for the development of HO-responsive theranostic prodrugs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2022.106154DOI Listing

Publication Analysis

Top Keywords

theranostic prodrugs
12
allyl phenyl
8
tumor cells
8
phenyl selenides
4
selenides acceptors
4
acceptors develop
4
develop ros-responsive
4
ros-responsive theranostic
4
prodrugs
4
prodrugs reactive
4

Similar Publications

In recent years, the near-infrared (NIR) fluorescence theranostic system has garnered increasing attention for its advantages in the simultaneous diagnosis- and imaging-guided delivery of therapeutic drugs. However, challenges such as strong background fluorescence signals and rapid metabolism have hindered the achievement of sufficient contrast between tumors and surrounding tissues, limiting the system's applicability. This study aims to integrate the pegylation strategy with a tumor microenvironment-responsive approach.

View Article and Find Full Text PDF

Synergistic Enhancement of Ferroptosis via Mitochondrial Accumulation and Photodynamic-Controlled Release of an Organogold(I) Cluster Prodrug.

J Am Chem Soc

January 2025

Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.

Effective delivery and controlled release of metallo-prodrugs with sustained activation and rapid response feed the needs of precise medicine in metal chemotherapeutics. However, gold-based anticancer drugs often suffer from detoxification binding and extracellular transfer by sulfur-containing peptides. To address this challenge, we integrate a thiol-activated prodrug strategy of newly prepared hypercoordinated carbon-centered gold(I) clusters (HCGCs) with their photosensitization character to augment the mitochondrial release of Au(I) in tumors.

View Article and Find Full Text PDF

The synthesis of degradable polymer prodrug nanoparticles is still a challenge to be met, which would make it possible to remedy both the shortcomings of traditional formulation of preformed polymers (, low nanoparticle concentrations) and those of the physical encapsulation of drugs (, burst release and poor drug loadings). Herein, through the combination of radical ring-opening polymerization (rROP) and polymerization-induced self-assembly (PISA) under appropriate experimental conditions, we report the successful preparation of high-solid content, degradable polymer prodrug nanoparticles, exhibiting multiple drug moieties covalently linked to a degradable vinyl copolymer backbone. Such a rROPISA process relied on the chain extension of a biocompatible poly(ethylene glycol)-based solvophilic block with a mixture of lauryl methacrylate (LMA), cyclic ketene acetal (CKA) and drug-bearing methacrylic esters by reversible addition fragmentation chain transfer (RAFT) copolymerization at 20 wt% solid content.

View Article and Find Full Text PDF

Hypoxia-responsive nanoparticles for fluorescence diagnosis and therapy of cancer.

Theranostics

January 2025

State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission, Key Laboratory of Rare and Rare Diseases in Shandong Province, School of Pharmacy (Institute of Pharmacy) of Shandong First Medical University, Jinan, Shandong 250117, China.

Hypoxia, caused by rapid tumor growth and insufficient oxygen supply, is a defining characteristic of numerous solid tumors and exerts a significant influence on tumor growth, metastasis, and invasion. Early diagnosis and effective killing of tumor cells are crucial for cancer treatment. In recent years, the emergence of nanomaterials has overcome the difficulties in the delivery of chemotherapeutic drugs and contrast agents to tumor area.

View Article and Find Full Text PDF

Lysine demethylases (KDMs) catalyze the oxidative removal of the methyl group from histones using earth-abundant iron and the metabolite 2-oxoglutarate (2OG). KDMs have emerged as master regulators of eukaryotic gene expression and are novel drug targets; small-molecule inhibitors of KDMs are in the clinical pipeline for the treatment of human cancer. Yet, mechanistic insights into the functional heterogeneity of human KDMs are limited, necessitating the development of chemical probes for precision targeting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!