Plants respond to environmental stressors, such as an oligotrophic environments, by altering the morphological and physiological functions of their leaves. Sex affects these functions because of the asymmetric cost of reproduction in dioecious plants. We compared the leaf mass per leaf area (LMA), ratio of intercellular air space in leaf mesophyll tissue (mesophyll porosity), palisade thickness, and carbon isotope ratio (δ13C) of leaves of the dioecious shrub Myrica gale based on sex and gradients of soil water chemistry across habitats in the field. The PCA showed that the first three principal components accounted for 84.5% of the variation. PC1 to PC3 were associated with the origin of soil water, nitrogen status of habitats, and sea-salt contributions, respectively. LMA varied from 5.22 to 7.13 μg/cm2, and it was positively related to PC2 and negatively related to PC3, but not to PC1 or sex, suggesting that LMA was low under poor nitrogen conditions and varied with salinity. Mesophyll porosity values were over 50% for all habitats. Mesophyll porosity was positively affected by PC3 and smaller in females than in males. This suggests that M. gale exhibits differences in mesophyll anatomy according to sex. Palisade thickness ranged from 0.466 to 0.559 mm/mm. The leaves of females had thinner palisade layers per mesophyll layer than those of males; however, the habitat did not affect the thickness of the palisade layer per mesophyll layer. The δ13C values of leaves varied from -32.14 to -30.51 ‰. We found that δ13C values were positively related to PC2 but not to PC1, PC3, and sex. Under poor nitrogen conditions, the δ13C of M. gale leaves decreased, suggesting that nutrient deficiency would decrease more under the long-term averaged ratio of photosynthesis than stomatal conductance, leading to low water use efficiency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9499279 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0275024 | PLOS |
Environ Res
December 2024
State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil& Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China.
To develop an efficient and cost-effective adsorbent for phosphate removal from water bodies, this study utilized natural red clay (RC) as a carrier. The modified red clay (MRC) was prepared through three methods: acid modification, high-temperature calcination, and metal loading. The preparation conditions were optimized, and the adsorption effects on phosphate were compared across these different modifications.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; Department of Ecological Sciences and Engineering, Chongqing University, Chongqing, 400045, China. Electronic address:
In wetlands, hydrological conditions drive plant community distribution, forming vegetation zones with plant species and material cycling. This mediates nitrogen migration and NO emissions within wetlands. Five vegetation zones in a large wetland were studied during flooding and drought periods.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Naturally aged microplastics (NAMPs) are commonly found in farmland soils contaminated with heavy metals (HMs), such as arsenic (As) and cadmium (Cd); yet their combined effects on soil-plant ecosystems remain poorly understood. In this study, we investigated the toxic effects of NAMPs and As-Cd on lettuce, considering the influence of earthworm activity, and examined changes in As-Cd bioavailability in the rhizosphere. Four experimental systems were established: soil-only, soil-lettuce, soil-earthworms, and soil-lettuce-earthworms systems, with four NAMPs concentrations (0, 0.
View Article and Find Full Text PDFWater Res
December 2024
Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, PR China. Electronic address:
As a byproduct of shale gas extraction, flowback water (FW) is produced in large quantities globally. Due to the unique interactions between pollutants and microorganisms, FW always harbor multiple antibiotic resistance genes (ARGs) that have been confirmed in our previous findings, potentially serving as a point source for ARGs released into the environment. However, whether ARGs in FW can disseminate or integrate into the environmental resistome remains unclear.
View Article and Find Full Text PDFBiodegradation
December 2024
Department of Civil engineering, Islamic Azad university, Mashhad Branch, Iran.
The widespread use of pesticides, including diazinon, poses an increased risk of environmental pollution and detrimental effects on biodiversity, food security, and water resources. In this study, we investigated the impact of Potentially Toxic Elements (PTE) including Zn, Cd, V, and Mn on the degradation of diazinon in three different soils. We investigated the capability and performance of four machine learning models to predict residual pesticide concentration, including adaptive neuro-fuzzy inference system (ANFIS), support vector regression (SVR), radial basis function (RBF), and multi-layer perceptron (MLP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!