The clinical course of COVID-19 is highly variable. It is therefore essential to predict as early and accurately as possible the severity level of the disease in a COVID-19 patient who is admitted to the hospital. This means identifying the contributing factors of mortality and developing an easy-to-use score that could enable a fast assessment of the mortality risk using only information recorded at the hospitalization. A large database of adult patients with a confirmed diagnosis of COVID-19 (n = 15,628; with 2,846 deceased) admitted to Spanish hospitals between December 2019 and July 2020 was analyzed. By means of multiple machine learning algorithms, we developed models that could accurately predict their mortality. We used the information about classifiers' performance metrics and about importance and coherence among the predictors to define a mortality score that can be easily calculated using a minimal number of mortality predictors and yielded accurate estimates of the patient severity status. The optimal predictive model encompassed five predictors (age, oxygen saturation, platelets, lactate dehydrogenase, and creatinine) and yielded a satisfactory classification of survived and deceased patients (area under the curve: 0.8454 with validation set). These five predictors were additionally used to define a mortality score for COVID-19 patients at their hospitalization. This score is not only easy to calculate but also to interpret since it ranges from zero to eight, along with a linear increase in the mortality risk from 0% to 80%. A simple risk score based on five commonly available clinical variables of adult COVID-19 patients admitted to hospital is able to accurately discriminate their mortality probability, and its interpretation is straightforward and useful.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9499271 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0274171 | PLOS |
Sci Rep
December 2024
Postgraduate Program in Health Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
Body composition abnormalities are prognostic markers in several types of cancer, including colorectal cancer (CRC). Using our data distribution on body composition assessments and classifications could improve clinical evaluations and support population-specific opportune interventions. This study aimed to evaluate the distribution of body composition from computed tomography and assess the associations with overall survival among patients with CRC.
View Article and Find Full Text PDFNPJ Vaccines
December 2024
Department for Evidence-based Medicine and Evaluation, University for Continuing Education Krems (Danube University Krems), Krems, Austria.
Pneumococcal infections are a serious health issue associated with increased morbidity and mortality. This systematic review evaluated the efficacy, effectiveness, immunogenicity, and safety of the pneumococcal conjugate vaccine (PCV)15 compared to other pneumococcal vaccines or no vaccination in children and adults. We identified 20 randomized controlled trials (RCTs).
View Article and Find Full Text PDFSci Rep
December 2024
Department of Applied Mathematics, Faculty of Mathematical Science, Ferdowsi University of Mashhad, Mashhad, Iran.
This study presents a web application for predicting cardiovascular disease (CVD) and hypertension (HTN) among mine workers using machine learning (ML) techniques. The dataset, collected from 699 participants at the Gol-Gohar mine in Iran between 2016 and 2020, includes demographic, occupational, lifestyle, and medical information. After preprocessing and feature engineering, the Random Forest algorithm was identified as the best-performing model, achieving 99% accuracy for HTN prediction and 97% for CVD, outperforming other algorithms such as Logistic Regression and Support Vector Machines.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Medical and Surgical Sciences, Institute of Cardiology, University of Bologna, Policlinico S.Orsola-Malpighi, via Massarenti 9, Bologna, 40138, Italy.
Cardiac implantable electronic devices infections (CIEDI) are associated with poor survival despite the improvement in transvenous lead extraction (TLE). Aetiology and systemic involvement are driving factors of clinical outcomes. The aim of this study was to explore their contribute on overall mortality.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
Evaluating the effectiveness of cancer treatments in relation to specific tumor mutations is essential for improving patient outcomes and advancing the field of precision medicine. Here we represent a comprehensive analysis of 78,287 U.S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!