[: antioxidant, hypoglycemic and hypolipidemic effects and (brief review)].

Vopr Pitan

Federal Research Centre of Nutrition, Biotechnology and Food Safety, 109240, Moscow, Russian Federation.

Published: September 2022

The cyanobacterium Arthrospira platensis biomass is a promising food source of biologically active substances with pharmacological activity. of this research was a brief review and analysis of experimental in vitro and in vivo studies of the antioxidant, hypoglycemic and hypolipidemic properties of A. platensis biomass, phycocyanins, and their chromophore - phycocyanobilin. . For the main search of the literature, the PubMed Internet resource was used, the key component of which is the Medline article database, covering about 75% of the world's medical publications. In addition, Scopus and Web of Science databases were used. Search depth - 20 years. Search keywords: Arthrospira platensis, phycobiliprotein, C-phycocyanin, allophycocyanin, hypoglycemic effect, hypolipidemic effect, antioxidant activity, in vitro and in vivo studies. . A brief description of the composition of the cyanobacterium Arthrospira platensis biomass, methods of its cultivation, phycocyanins extraction methods is presented. The results of experimental studies indicate the presence of pronounced antioxidant properties of A. platensis biomass, mainly due to phycocyanins in its composition. The hypoglycemic and hypolipidemic effects of A. platensis biomass and extracted phycocyanins intake have been established in vivo when modeling carbohydrate and/or lipid metabolism disorders. The results of in vitro and in vivo studies indicate the presence of pronounced antioxidant properties of phycocyanins. Hypoglycemic effects are shown in particular in experiments on rats with hyperlipidemia and alloxan diabetes fed a diet enriched with A. platensis biomass and on KKAy mice, treated with C-phycocyanin extract. . The analysis of the results of in vitro and in vivo studies of the antioxidant, hypoglycemic and hypolipidemic properties of A. platensis biomass and extracts with a high content of phycocyanins, presented in a brief review, suggests that their use in the diet of people with impaired carbohydrate and lipid metabolism is promising. Accordingly, from the standpoint of evidence-based medicine, clinical studies on the use of spirulina biomass and/or its extracts with a high content of phycocyanins as part of specialized foods intended for the prevention and/or dietary correction of carbohydrate and lipid metabolism disorders should be preceded by additional experimental physical-chemical, physiological and biochemical research.

Download full-text PDF

Source
http://dx.doi.org/10.33029/0042-8833-2022-91-4-19-25DOI Listing

Publication Analysis

Top Keywords

platensis biomass
28
hypoglycemic hypolipidemic
20
vitro vivo
16
vivo studies
16
antioxidant hypoglycemic
12
arthrospira platensis
12
properties platensis
12
lipid metabolism
12
hypolipidemic effects
8
cyanobacterium arthrospira
8

Similar Publications

Improving protein hydrolysis and digestibility in biomass through recombinant peptidases (EC 3.4): Opportunities for monogastric animal diets.

Heliyon

January 2025

CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisboa, Portugal.

This study investigates the use of recombinant peptidases (EC 3.4) to improve protein hydrolysis and digestibility in , with a focus on addressing the challenge of reduced protein bioavailability for monogastric animals due to resistant protein-pigment formations, such as phycocyanin, and increased digesta viscosity caused by jellification properties. A library of 192 peptidases was generated, from which 142 soluble peptidases were expressed in and subsequently screened for activity against an suspension .

View Article and Find Full Text PDF

Increasing the sustainability of photoautotrophic microalgae production by minimising freshwater requirements.

N Biotechnol

January 2025

Department of Chemical Engineering, University of Almería, Almería 04120, Spain; Desalination and Photosynthesis Functional Unit, CIESOL Solar Energy Research Centre, Almería 04120, Spain. Electronic address:

There are now several companies that are producing microalgae such as Arthrospira platensis, Chlorella vulgaris, and Dunaliella salina, among others. They are cultivated mainly in large-scale raceway and tubular photobioreactors. Microalgae production represents a sustainable alternative to conventional biomass production.

View Article and Find Full Text PDF

(1) Background: The widespread use of nanoparticles (NPs) implies their inevitable contact with living organisms, including aquatic microorganisms, making it essential to understand the effects and consequences of this interaction. Understanding the adaptive responses and biochemical changes in microalgae and cyanobacteria under NP-induced stress is essential for developing biotechnological strategies that optimize biomolecule production while minimizing potential toxicity. This study aimed to evaluate the interactions between various potentially toxic nanoparticles and the cyanobacterial strain , focusing on the biological adaptations and biochemical mechanisms that enable the organism to withstand xenobiotic exposure.

View Article and Find Full Text PDF

Towards sustainable spirulina farming: Enhancing productivity and biosafety with a salinity-biostimulants strategy.

Bioresour Technol

January 2025

Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources and Environment, Nanchang University, Nanchang 330031, China; Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang, China; Nanchang University-Imperial College London Joint Laboratory on Photosynthesis and Low Carbon Biotechnology, Nanchang University, Nanchang, China. Electronic address:

Arthrospira platensis (spirulina) is pivotal to the global microalgae industry, valued for its nutritional and bioactive properties. However, its sustainable production is challenged by freshwater scarcity and biological contaminants. This study introduces a salinity-biostimulants strategy to adapt a freshwater spirulina strain, CBD05, to near-seawater salinity (3 %).

View Article and Find Full Text PDF

Background: In response to iron deficiency and other environmental stressors, cyanobacteria producing siderophores can help in ameliorating plant stress and enhancing growth physiological and biochemical processes. The objective of this work was to screen the potential of Arthrospira platensis, Pseudanabaena limnetica, Nostoc carneum, and Synechococcus mundulus for siderophore production to select the most promising isolate, then to examine the potentiality of the isolated siderophore in promoting Zea mays seedling growth in an iron-limited environment.

Results: Data of the screening experiment illustrated that Synechococcus mundulus significantly recorded the maximum highest siderophore production (78 ± 2%) while the minimum production was recorded by Nostoc carneum (24.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!