A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Toward Safe Wearer-Prosthesis Interaction: Evaluation of Gait Stability and Human Compensation Strategy Under Faults in Robotic Transfemoral Prostheses. | LitMetric

Although advanced wearable robots can assist human wearers, their internal faults (i.e., sensors or control errors) also pose a challenge. To ensure safe wearer-robot interactions, how internal errors by the prosthesis limb affect the stability of the user-prosthesis system, and how users react and compensate for the instability elicited by internal errors are imperative. The goals of this study were to 1) systematically investigate the biomechanics of a wearer-robot system reacting to internal errors induced by a powered knee prosthesis (PKP), and 2) quantify the error tolerable bound that does not affect the user's gait stability. Eight non-disabled participants and two unilateral transfemoral amputees walked on a pathway wearing a PKP, as the controller randomly switched the control parameters to disturbance parameters to mimic the errors caused by locomotion mode misrecognition. The size of prosthesis control errors was systematically varied to determine the error tolerable bound that disrupted gait stability. The effect of the error was quantified based on the 1) mechanical change described by the angular impulse applied by the PKP, and 2) overall gait instability quantified using human perception, angular momentum, and compensatory stepping. The results showed that the error tolerable bound is dependent on the gait phase and the direction of torque change. Two balance recovery strategies were also observed to allow participants to successful respond to the induced errors. The outcomes of this study may assist the future design of an auto-tuning algorithm, volitionally-controlled powered prosthetic legs, and training of gait stability.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNSRE.2022.3208778DOI Listing

Publication Analysis

Top Keywords

gait stability
16
internal errors
12
error tolerable
12
tolerable bound
12
control errors
8
errors
7
gait
6
stability
5
safe wearer-prosthesis
4
wearer-prosthesis interaction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!