West Nile virus (WNV) can cause asymptomatic infection in humans, result in self-limiting febrile illness, or lead to severe West Nile Neuroinvasive disease (WNND). We conducted a pilot study to compare selected biomarkers of oxidative stress in sera of viremic West Nile virus patients and asymptomatic infected blood donors to investigate their potential as predictors of disease severity. We found that total oxidant status was elevated in WNND and in uncomplicated WNV infections (median 9.05 (IQR 8.37 to 9.74) and 7.14 (7.03 to 7.25) µmol HO equiv./L, respectively) compared to asymptomatic infections (0.11 (0.07 to 0.19) µmol HO equiv./L) ( = 0.048). MDA levels showed a similar trend to TOS, but differences were not significant at α = 0.05. Total antioxidant status did not differ significantly between different disease severity groups. Oxidative stress appears to be associated with more severe disease in WNV-infected patients. Our preliminary findings warrant prospective studies to investigate the correlation of oxidative stress with clinical outcomes and severity of WNV infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9505794PMC
http://dx.doi.org/10.3390/tropicalmed7090207DOI Listing

Publication Analysis

Top Keywords

oxidative stress
16
west nile
16
disease severity
12
nile virus
12
biomarkers oxidative
8
pilot study
8
µmol equiv/l
8
disease
5
stress
4
stress serum
4

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

AIMST University, Bedong, Kedah, Malaysia.

Background: Senile dementia (SD) is a deteriorative organic brain disorder and it comprises Alzheimer's disease (AD) as a major variant. SD is shown impairment of mental capacities whereas AD is degeneration of neurons. According to World Health Organization (WHO) report; more than 55 million peoples have dementia and it is raising 10 million new cases every year.

View Article and Find Full Text PDF

Background: Developing drugs for treating Alzheimer's disease (AD) has been extremely challenging and costly due to limited knowledge on underlying biological mechanisms and therapeutic targets. Repurposing drugs or their combination has shown potential in accelerating drug development due to the reduced drug toxicity while targeting multiple pathologies.

Method: To address the challenge in AD drug development, we developed a multi-task machine learning pipeline to integrate a comprehensive knowledge graph on biological/pharmacological interactions and multi-level evidence on drug efficacy, to identify repurposable drugs and their combination candidates RESULT: Using the drug embedding from the heterogeneous graph representation model, we ranked drug candidates based on evidence from post-treatment transcriptomic patterns, mechanistic efficacy in preclinical models, population-based treatment effect, and Phase 2/3 clinical trials.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

School of Medical & Allied Sciences, K.R. Mangalam University, Gurugram, Haryana, India.

Background: Parkinson's disease is an hypokinetic disorder characterized by selective loss of dopaminergic in substantia nigra pars compacta (SNPc) region of mid-brain. Dopaminergic degeneration of neurons is considered to be due to oxidative stress, neuroinflammation, neurons mitochondrial dysfunction and glutamate excitotoxicity etc. Filgrastim has been reported to produce anti-oxidant, anti-inflammatory and neuromodulatory actions in previous studies.

View Article and Find Full Text PDF

Background: The impact of probiotics as gut and immunological modulator in restoring gut microbial balance and immune cells expression have generated much attention in the health sector. Its inhibitory effect on bacterial translocation and associated neural inflammatory processes has been reported. However, there is scarcity of data on its neuroprotective impact against neuroinflammation-associated neurodegeneration and memory impairment.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Yonsei University, Incheon, Incheon, Korea, Republic of (South).

Background: Cyclin Y (CCNY) is a member of cyclin protein family inhibiting long-term synaptic plasticity, which is related to the learning and memory function in neuronal system. Recently, CCNY has been reported to associate with the cognitive deficits in Alzheimer's disease (AD).

Method: In this study, we discovered PFTAIRE peptide to diminish CCNY protein level and to ameliorate cognitive dysfunction in AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!