A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fractionated Proton Irradiation Does Not Impair Hippocampal-Dependent Short-Term or Spatial Memory in Female Mice. | LitMetric

The environment outside the Earth's protective magnetosphere is a much more threatening and complex space environment. The dominant causes for radiation exposure, solar particle events and galactic cosmic rays, contain high-energy protons. In space, astronauts need healthy and highly functioning cognitive abilities, of which the hippocampus plays a key role. Therefore, understanding the effects of H exposure on hippocampal-dependent cognition is vital for developing mitigative strategies and protective countermeasures for future missions. To investigate these effects, we subjected 6-month-old female CD1 mice to 0.75 Gy fractionated H (250 MeV) whole-body irradiation at the NASA Space Radiation Laboratory. The cognitive performance of the mice was tested 3 months after irradiation using Y-maze and Morris water maze tests. Both sham-irradiated and H-irradiated mice significantly preferred exploration of the novel arm compared to the familiar and start arms, indicating intact spatial and short-term memory. Both groups statistically spent more time in the target quadrant, indicating spatial memory retention. There were no significant differences in neurogenic and gliogenic cell counts after irradiation. In addition, proteomic analysis revealed no significant upregulation or downregulation of proteins related to behavior, neurological disease, or neural morphology. Our data suggests H exposure does not impair hippocampal-dependent spatial or short-term memory in female mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503909PMC
http://dx.doi.org/10.3390/toxics10090507DOI Listing

Publication Analysis

Top Keywords

impair hippocampal-dependent
8
spatial memory
8
memory female
8
female mice
8
spatial short-term
8
short-term memory
8
mice
5
fractionated proton
4
irradiation
4
proton irradiation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!