Effective particle density is a key parameter for assessing inhalation exposure of engineered NPs in occupational environments. In this paper, particle density measurements were carried out using two different techniques: one based on the ratio between mass and volumetric particle concentrations; the other one based on the ratio between aerodynamic and geometric particle diameter. These different approaches were applied to both field- and laboratory-scale atomization processes where the two target NPs (N-doped TiO, TiON and AgNPs capped with a quaternized hydroxyethylcellulose, AgHEC) were generated. Spray tests using TiON were observed to release more and bigger particles than tests with AgHEC, as indicated by the measured particle mass concentrations and volumes. Our findings give an effective density of TiON particle to be in a similar range between field and laboratory measurements (1.8 ± 0.5 g/cm); while AgHEC particle density showed wide variations (3.0 ± 0.5 g/cm and 1.2 + 0.1 g/cm for field and laboratory campaigns, respectively). This finding leads to speculation regarding the composition of particles emitted because atomized particle fragments may contain different Ag-to-HEC ratios, leading to different density values. A further uncertainty factor is probably related to low process emissions, making the subtraction of background concentrations from AgHEC process emissions unreliable.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503037 | PMC |
http://dx.doi.org/10.3390/toxics10090498 | DOI Listing |
Dalton Trans
January 2025
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
Silicon-based anode materials experience significant volume changes and low conductivity during the lithiation process, which severely hinders their successful application in lithium-ion batteries. Reducing the size of silicon particles and effectively combining them with carbon-based materials are considered the main strategies to enhance the lithium-ion storage performance of silicon-based anodes. In this study, we employed a "bottom-up" strategy to synthesize Si@C anode materials by cross-linking octa-aminopropyl polyhedral oligomeric silsesquioxane (NH-POSS) with terephthalaldehyde and subsequent high-temperature treatment and low-temperature liquid reduction.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, China.
Porous piezoelectric materials have attracted much interest in the fields of sensing and energy harvesting owing to their low dielectric constant, high piezoelectric voltage coefficient, and energy harvesting figure of merit. However, the introduction of porosity can decrease the piezoelectric coefficient, which restricts the enhancement of output current and power density. Herein, to overcome these challenges, an array-structured piezoelectric composite energy harvester with aligned porosity was constructed via a dual structure design strategy to enhance the output current and power density.
View Article and Find Full Text PDFCommun Phys
December 2024
Institut für Theoretische Physik, TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria.
Despite the intrinsic charge heterogeneity of proteins plays a crucial role in the liquid-liquid phase separation (LLPS) of a broad variety of protein systems, our understanding of the effects of their electrostatic anisotropy is still in its early stages. We approach this issue by means of a coarse-grained model based on a robust mean-field description that extends the DLVO theory to non-uniformly charged particles. We numerically investigate the effect of surface charge patchiness and net particle charge on varying these features independently and with the use of a few parameters only.
View Article and Find Full Text PDFSmall
January 2025
BASF SE, Dept. Analytical & Material Science, 67056, Ludwigshafen, Germany.
Assessing the inhalation hazard of microplastics is important but necessitates sufficient quantity of microplastics that are representative and respirable (<4 µm). Common plastics are not typically manufactured in such small sizes. Here, solvent precipitation is used to produce respirable test materials from thermoplastics polyurethane (TPU), polyamide (PA-6), polyethylene terephthalate (PET), and low-density polyethylene (LDPE).
View Article and Find Full Text PDFWater Res
January 2025
China Electronics System Engineering No.2 Construction Co., Ltd., Wuxi 214115, PR China.
Copper-containing industrial wastewater, characterized by strong acidity, high ionic strength, and various competing metals, presents significant challenges for Cu(II) recovery. To address these issues, an electric field-enhanced ultrafiltration process was developed, assisted with a functional polyelectrolyte with high selectivity for Cu(II). The polyelectrolyte, termed PPEI, was synthesized by grafting picolyl groups onto polyethyleneimine (PEI), enhancing its affinity for Cu(II).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!