Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Serious degradation and the short photogenerated carrier lifetime for the wide-bandgap semiconductor ZnO have become prominent issues that negatively affect photoelectrochemical (PEC) water splitting. Herein, a novel electron transport pathway was constructed by simple but effective coaxial growth of ZnO/ZnS/ZnIn S heterostructure nanoarrays to increase the carrier separation efficiency. This new photoanode fulfilled the requirements of both favorable band alignment and stability, achieving a stable photocurrent density of 1.146 mA cm at 1.2 V , which was approximately twice that of pristine ZnO. Detailed experimental studies revealed that the improved PEC activity was due to the lattice-matching interface coherency that activated the carrier transport pathway, giving rise to an optimized interfacial electronic structure for promoted charge separation by the built-in electric field and strengthened water oxidation activity. This design may provide a new approach to fabricating various efficient lattice-matching coherent interface photoanodes for PEC water splitting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.202201469 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!