Reaction rate acceleration using green methods is an intriguing area of research for chemists. In this regard, water as a "green solvent" plays a crucial role in the acceleration of some organic transformations and reveals exclusive selectivity and reactivity in comparison with conventional organic solvents. In particular, multicomponent reactions (MCRs) as sustainable tools lead to the rapid generation of small-molecule libraries in water and aqueous media due to the prominent role of the hydrophobic effect. MCRs, as diversity-oriented synthesis (DOS) methods, have great efficiency with simple operations, atom, pot, and step economy synthesis, and mechanistic beauty. Among diverse classes of MCRs, isocyanide-based multicomponent reactions (I-MCRs), as sustainable and versatile reactions, have gained considerable attention in the synthesis of diverse heterocycle rings, especially in drug design because of the peculiar nature of isocyanide as a particular active reactant. I-MCRs that are performed in water are mild, environmentally friendly, and easily controlled, and have a reduced number of workup, purification, and extraction steps, which fit well with the advantages of "green" chemistry. Performing these powerful organic transformations in water and aqueous media is accompanied by acceleration owing to negative activation volumes, which originate from connecting several reactants together to generate a single product. It should be noted that the combination of MCR strategy and aqueous phase reaction is of growing interest for the development of sustainable synthetic techniques in organic conversions. However, an exclusive account focusing on the recent progress in eco-friendly I-MCRs for the construction of heterocycles in water and aqueous media is particularly lacking. This review highlights the progress of various kinds of I-MCRs in water and aqueous media as benign methods for the efficient construction of vital heterocyclic scaffolds, with a critical discussion of the subject in the period 2000-2021. We hope that this themed collection will be of interest and beneficial for organic and pharmaceutical chemists and will inspire more reaction development in this fascinating field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s41061-022-00403-8 | DOI Listing |
Langmuir
January 2025
School of Physics, East China University of Science and Technology, Shanghai 200237, China.
Black phosphorus (BP), a promising two-dimensional material, faces significant challenges for its applications due to its instability in air and water. Herein, molecular dynamics simulations reveal that a self-assembled ferrocene (FeCp) molecular layer can form on BP surfaces and remain stable in aqueous environments, predicting its effectiveness for passivation. This theoretical finding is corroborated by X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, Raman spectroscopy, and optical microscopy observations.
View Article and Find Full Text PDFR Soc Open Sci
January 2025
Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City (IUH), Ho Chi Minh 71420, Vietnam.
This study focused on fabricating a cellulose aerogel for oil spill clean-up, using common reed () as the cellulose source. The process involved isolating cellulose from reed via traditional Kraft pulping, considering the effects of key factors on the isolated cellulose content. After a two-stage HP bleaching sequence, the highest cellulose content achieved was 27.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Physical Chemistry, Sciences II, University of Geneva, 30 Quai Ernest Ansermet, Geneva 1211, Switzerland.
The formation of protein condensates (droplets) via liquid-liquid phase separation (LLPS) is a commonly observed phenomenon in vitro. Changing the environmental properties with cosolutes, molecular crowders, protein partners, temperature, pressure, etc. has been shown to favor or disfavor the formation of protein droplets by fine-tuning the water-water, water-protein, and protein-protein interactions.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
The bromination of α-oxo ketene dithioacetals using KBr/HO, catalyzed by vanadium chloroperoxidase (VCPO), has been successfully demonstrated. A comparative study of enzymatic processes "on water" "in water", using 2 wt% of the surfactant TPGS-750-M revealed that the in-water protocol not only provides higher yields but also accommodates a broader substrate scope. This bromination method in an aqueous micellar medium enabled the preparation of brominated α-oxo ketene dithioacetals in fair to excellent yields (23 examples).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemical Engineering and Environmental Technology, Universidad de Zaragoza, Campus Río Ebro-Edificio I+D, 50018 Zaragoza, Spain.
The emergence of green chemistry and engineering principles to enforce sustainability aspects has ensured the prevalence of green solvents and green processes. Our study addresses this quest by exploring drug delivery applications of hydrophobic deep eutectic solvents (DESs) which are alternative green solvents. Initially, this work showcases the hydrophobic drug solubilization capabilities of a natural hydrophobic DES, menthol, and decanoic acid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!